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Preface 
The physics of double diffusion and the role that it plays in the ocean provided the central 
theme for the 1996 summer program in Geophysical Fluid Dynamics. Barry Ruddick gave 
a broad, yet penetrating survey of experimental studies of double diffusion in the laboratory 
and followed that up with an overview of oceanic observations in which the presence of 
double diffusion is manifested in vertical profiles and in horizontal interleaving. Ruddick's 
involvement in laboratory studies, oceanic observations and analyses of the effects of double 
diffusion vs those of turbulent exchanges made his lectures particularly enlightening. Ray 
Schmitt's account of the problems that the observer faces in recording the presence of double 
diffusion in the ocean made us aware of the subtle and mysterious obstacles that nature puts 
in the way of the observer. Eric Kunze contributed several semi-empirical analyses (he calls 
them guesses) and George Veronis provided some background material for the students. 

Although Ruddick, Schmitt, Kunze and Veronis gave the formal lecture course summarized 
in the following pages, there were many seminars that could have served the same purpose. 
Andy Woods demonstrated some geological applications and Jack Whitehead provided more 
laboratory examples, some of them quite different from the usual double diffusive experiments. 
Stewart Turner arrived and showed us an entralling film history of double diffusion as the 
field developed via laboratory experiments. Oliver Kerr continued the consideration of double 
diffusion outside the ocean by introducing us to some of the subtle influences of boundaries. 

The tutorial component of the summer continued with an excellent pair of lectures by Keith 
Julien illustrating the use of small amplitude perturbation analysis and bifurcation theory 
to unfold the dynamics of nonlinear convection. Paul Kolodner and Hermann Riecke intro- 
duced us to binary fluid convection, a topic closely related to double diffusion. Kolodner's 
array of fascinating experiments with binary fluids was especially appealing to the mathe- 
maticains because the interesting behavior is at small Rayleigh numbers. Riecke presented 
mathematical analyses of several of the phenomena observed by Kolodner. Paul Kolodner 
then described experimental work in viscoelastic convection. The techniques introduced in 
Julien's lectures and applied by Riecke were further exploited by Edgar Knobloch and Michael 
Proctor. Knobloch examined travelling waves and patterns in binary fluid convection while 
Proctor discussed magnetoconvection. Julien, Knobloch and Proctor supported their weakly 

nonlinear analyses with numerical simulations. 

A range of topics was addressed in seminars given by staff and visitors. Abstracts of some 
of these are included in this volume. A complete list of seminars may be found at the back 

of this volume. 

The Fellows concluded the summer by presenting reports on their summer research that 
ranged from experiments with double diffusion in a slot, work on the formation and evolution 
of staircases, double diffusion in stars and the interaction between convection and radiation. 
Lastly, a question on competition between the oscillatory and stationary instabilities in double 



diffusive convection prompted Keith Julien and Neil Balmforth to study the Takens-Bogdanov 
bifurcation in an extended system. Their report is included in this volume. 

We had hoped that the ten fellows of 1996 could transfer the Charlie Brown trophy to some 
other team in the softball league but this year, too, they were forced to vent their frustrations 
on the faculty team on the last day of the program. 

We are grateful to the Woods Hole Oceanographic Institution, which has been so supportive 
of the GFD Program over all of the years. We thank Jake Peirson who, with the staff of the 
Education Office, has shouldered much of the administrative burden of the GFD program 
over the past two decades and whose efforts made our stay at Walsh Cottage particularly 
trouble-free. Dacia Tucholke, with the help of Lee Campbell, was very effective as our local 
administrator. We are grateful to the National Science Foundation and the Office of Naval 
Research for supporting this 38th GFD summer program. 

George Veronis and Steve Meacham 
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Double Diffusion: Laboratory Experiments 

Barry Ruddick, 
Dalhousie University 

June 17 and 24, 1996 

1    Salt Fingers—Qualitative Experiments 

1.1 The Salt Fountain 

Much of the ocean is stratified with warm, salty water on top of cool, fresh water 
as shown in Figure 1. This is especially true at lower latitudes where rainfall is less 
abundant and evaporation makes the top water saltier. In 1956 Stommel, Arons, and 
Blanchard [1] performed a thought experiment: they imagined a long thin pipe made of a 
heat conducting material like copper immersed in a fluid with concentration properties 
akin to the ocean (Figure 2). A cold, fresh fluid element at the bottom of the pipe 
displaced upwards heats up by diffusion through the pipe, but its salinity remains 
constant. The fluid element is then at the same temperature but less salty than the 
surrounding fluid, making it buoyant. The pipe will then act as a perpetual salt fountain. 
The effect can also be reversed to build a perpetual salt pump. The important thing 
to note here is that the fluid is stably stratified in density (since the destabilizing effect 
of the salt gradient is less that the stabilization due the heat gradient) so that one does 
not expect a convective instability to develop. 

1.2 Salt Fingers 
The perpetual salt fountain was an 'oceanographic curiosity' until Stern [2] showed via 
linear stability analysis that since salt diffuses more slowly than heat (the ratio of their 
diffusivities is r = KS/KT ~ 10~2) the pipe isn't needed. Figure 3 shows schematically 
the mechanism involved. The horizontal scale of the fastest growing fingers, L, is given 

L~*(^Y'\ (1) 
where g is the acceleration due to gravity, a the coefficient of thermal expansion of 
water, Tz the temperature gradient, v the viscosity, and KT the heat diffusivity. 

In 1967 Turner [4] performed what is called a 'two-layer rundown' experiment. In 
this setup a layer of warm, salty water is placed on top of cool, fresh water (Figure 5a). 
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Figure 1: Temperature, salinity, and density stratification of the ocean. 
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Cool, fresh 

Figure 2: The perpetual salt fountain. 



Warm, salty 

Fingers 

Cool, fresh 

Figure 3: A schematic of the salt fingering instability. 

Figure 4:   Vertical cross-section of salt fingers from an experiment by Stern and 
Turner [3]. 
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Figure 5: Two-layer rundown experiment of Turner [4]: (a) Experimental setup, (b) 
Heat gradient, (c) Salt gradient, (d) Density gradient. The solid line is the initial 
gradient and the dashed line is the final one. 

The experiment is allowed to proceed with no additional heat or salt supply. The density 
is initially stably stratified, and so the fluid cannot undergo convection. However, 
"fingers" grow from the interface of the two layers, consisting of alternating columns of 
ascending and descending fluid. The descending fingers are carrying warm, salty water 
down and the ascending ones transport cool, fresh water upwards. More potential 
energy (P.E.) must be lost from the salinity field than is gained by the temperature 
field in order for the system not to gain energy. The net result is thus to increase the 
density gradient. This is counter intuitive because both the salinity and temperature 
are flowing down gradient, whereas the mass flux is flowing up gradient, giving us a 
negative eddy diffusivity KP (see Figures 5b-d). In addition to showing that the salt 
field provides the energy for the fingers, Turner also: 

1. Showed how the downward mass flux drove convection in the mixed layers (see 
Figure 6); 

2. Showed that convection sweeps away the fingers and sharpens (thins) the interface. 
The layer thus reaches an "equilibirum" thickness; 

3. Measured the salt and heat fluxes—more about this in my lecture on flux meas- 
urements. 

Shirtcliffe and Turner [5] studied the salt finger pattern in the horizontal plane. They 
found that the fingers tend to arrange themselves in a square lattice over small domains 
with irregular orientations, as shown in Figure 7. Their experiment also allowed for 
direct confirmation of Eq. 1, i.e. that L ~ /i1/4. 
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Figure 6: Salt fingers driving convection in the mixed layers. 

Figure 7: Planview of sugar-salt fingers obtained by the shadowgraph method by Shirt- 
cliffe and Turner [5]. 
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Figure 8: The width of the fingers, L, plotted against the mean temperature gradient 
in the fingers, Tz. The line is a fit to the data with slope -1/4. From Linden [6]. 

Double-diffusive experiments are often performed with a variety of solute pairs hav- 
ing unequal diffusivities. For example, sugar diffuses about 1/3 as quickly as salt, and 
when a solution of sugar is floated over a solution of salt, "sugar" fingers form. Many 
people think of the classic case of heat and salt when trying to understand the physics 
of such phenomena, and so experimenters have developed the following terminology: 
Call the faster-diffusing component "T-stuff", and its concentration by T. Similarly, 
call the slower-diffusing component "S-stuff", with concentration S. For the sugar/salt 
system, S is the sugar concentration and T is the salt concentration, r ~ 1/3, and the 
Prandtl number is v/Ksan — 500. 

Linden [6] was able to make direct measurements of w, the vertical velocity, and 
the finger width L. The former is used to estimate flux. He used heat and sugar 
(T = «sugarAr = -005) rather than heat and salt (r = KS/KT = 1/70). This allowed 
the use of the thymol blue dye technique to trace the flow. He verified Eq. 1 more 
accurately, as shown in Figure 8. 

Linden, upon extrapolating his results to the ocean, predicted salt finger length 
scales h ~ 20 cm, widths L ~ .5 cm, vertical velocities w ~ .02 cm/s, and a convecting 
layer thickness, H, of order 40 m. Oceanographic measurements have confirmed the 
value of H, but found h to be of the order of several meters. Linden also made the first 
detailed salt and temperature profile observations, reproduced in Figure 9. The profile 
suggests a situation similar to Figure 6, since the salt concentration is roughly constant 
through the "core" (fingering) layer, i.e. S is mostly advected in the fingers. Figures 10 
and 11 show two shadowgraph pictures of the different regions for high and low density 



Figure 9: Salt and temperature profiles as a function of depth, from Linden [6]. 

ratios Rp, respectively (from Griffiths and Ruddick [7]). The density ratio is defined as 

Stabilizing density gradient 
9 Destabilizing density gradient' 

a | AT| 

J8|AS|' 
II AS] 
a | AT|' 

in the fingering regime, 

in the diffusive regime. (2) 

Turner [4] and Shirtcliffe and Turner [5] introduced the idea of an "equilibrium" 
interface thickness: in the absence of convection, the fingers would grow vertically and 
thicken the interface. This is balanced by the tendency of the convective motions to 
entrain the fingertips. Since the convection is driven by the finger buoyancy flux, a 
balance between the thickening and thinning effects is expected. 

In order to study the breakdown of salt fingering regions into layers, Linden [8] set 
up a sugar-salt experiment with initial gradients as shown in Figure 12. There is a 
gradient in the middle providing weak fingers and a sharp S-T interface at the top and 
bottom of this gradient region. This initial setup leads to the breakdown of the central 
gradient region into two mixed layers, as shown in Figure 13. 



Figure 10: Sugar-salt fingers at high density ratio, Rp. A sharp core zone with well- 
organized vertically oriented ringers is clearly visible. There is convection in the well 
mixed upper and lower regions with transition zones between those regions and the 
fingers in which buoyant finger fluid is swept into the convection region (from Griffiths 
and Ruddick [7]). 

Figure 11: Oblique view of sugar-salt finger interface at low density ratio Rp. Individual 
ringers are not seen. Fluid is rising from the finger zone into the connecting upper layer 
in the form of continuous lines of buoyant plumes (from Griffiths and Ruddick [7]). 



Figure 12: The intended initial vertical profiles of T-stuff (salt) and S-stuff (sugar) in 
the experiment by Linden [8]. 

2    Two-dimensional Aspects of Double-diffusive Con- 
vection 

2.1    Laboratory Experiments 

Recall that the weird and interesting property of double-diffusion is that, while the 
temperature and salinity fluxes are always downgradient (i.e., warm, salty layers always 
become cooler and fresher), the flux of density is always upgradient: the density contrast 
between layers increases. This is of course a release of potential energy, and is the 
source of energy that drives the convective motions. (Contrast this to Rayleigh-Benard 
convection, with temperature and density fluxes downgradient, so that an external 
source of energy (heating from below and/or cooling from above) is required to drive 
the convection.) 

Double-diffusion is interesting because of its self-driven nature, but it may be im- 
portant because: 

1. The fluxes are enhanced over the molecular values, 

2. Double-diffusion causes a stratification to break down into layers, and this can 
also enhance fluxes. 

We were reminded of experiments by Huppert and Linden [9] described in an earlier 
lecture (Section 1) showing how imposed vertical fluxes of heat or salt can cause 1- 
dimensional layer formation. 
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Figure 13: A sequence of photographs, starting from the initial profile in Figure 12, 
showing the breakdown of the fingers in the interface (from Linden [8]). 
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Figure 14: Breakdown of layers due to double diffusive boundary layers (from Turner 
and Chen [11]). 

The classic demonstration of lateral effects was by Thorpe, Hutt and Soulsby [10]. A 
salt-stratified solution of uniform temperature is heated from one vertical side wall. The 
thermal boundary layer is buoyant and flows upward, advecting salt solution with it. 
This vertical boundary layer becomes unstable to a regular series of lateral disturbances, 
and eventually a regular series of laterally intruding layers grows outward from the 
heated wall. The important thing is that these layers carry the heat laterally away 
from the wall far faster than molecular heat diffusion. 

Turner and Chen [11] showed that lateral differences of temperature and salinity 
caused by a great variety of effects can also cause formation of layers, even when they 
can't form by vertical processes. Figure 14 shows a diffusive salt/sugar stratification 
into which a sloping impermeable boundary was inserted. The zero-flux boundary 
condition forces the initially vertical T- and S- concentration gradients to be normal 
to the sloping boundary. This forces a complex double-diffusive buoyancy layer and 
causes the eventual breakdown into the layers seen here. 

Building on the experiments of Turner [12], Ruddick and Turner [13] designed an 
experiment to model a thermohaline oceanic front, across which there are lateral dif- 
ferences of T and S, equal and opposite in their contribution to the density difference. 
A long tank with a removable vertical barrier in the middle was filled with density 
stratified fluid on both sides of the barrier. On the left, the stratification was fresh at 
the top and sugar water at the bottom, varying linearly in between. On the right, the 
stratification was fresh at the top and salt water at the bottom. The densities were 
equal on either side of the barrier at the top and at the bottom, and varied linearly in 
between. A time-lapse movie showed what happened when the barrier was withdrawn: 
some initial small-scale internal wave motions generated by the withdrawal died away. 
This left horizontal isopycnals but fluid properties that varied rapidly across a narrow 
frontal region in the middle of the tank (the "front"). The contrast in sugar concentra- 
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DIFFUSIVE   INTERFACE 

Figure 15: Alternating layers of high-S and high-T water in the central region. 

tion, ßAS, varied linearly from zero at the top to a maximum at the bottom. The high- 
sugar side of the front mimics the warm, salty side of an oceanic thermohaline front. 
The frontal zone appears to have a lot of small-scale turbulent motion, with moderately 
strong up-and downflows, but no visible organization. 

After about ten minutes real time, some organized layering gradually appears, and 
after about twenty minutes or so, the vertical scale of the layers and the rate of lateral 
spread becomes visible. The front develops into a slowly broadening "Christmas tree" 
shape consisting of many intruding layers. The layers near the bottom, where ßAS 
is largest, are thicker and intrude faster. Each layer consists of a region of "sugar" 
fingers bounded above and below by a diffusive interface. The movie also showed that 
the layers sloped upwards from the "warm and salty" (high-sugar) side. 

How do these lateral intrusions work? There is no horizontal difference in density, 
only in T-S fluid properties. There is a feedback loop involving vertical double-diffusive 
fluxes as the key link. Suppose a small-amplitude periodic motion is started, consisting 
of sinusoidally-varying horizontal current: 

1. Lateral advection acts to bring high-5 water from the left and high-T water from 
the right, resulting in alternating layers of high-5 and high-T water in the central 
region. If we consider that in the frontal region, contours of S and T are nearly 
vertical, then lateral advection causes them to become "wiggly" (see Figure 15). 

2. The differences between the high-5 and high-T layers create alternating bands 

12 



Diffusive 

Figure 16: Movement of fluid parcels in the layers. 

of finger and diffusive sense vertical gradients in the central region. 

3. The vertical finger fluxes cause water parcel A, in the upper half of the finger 
region, to lose S, gain T, and to become less dense. The opposite occurs to parcel 
B in the lower half of the fingers (Figure 16). 

4. As parcel A moves from left to right, it becomes less dense due to the finger fluxes 
and so rises as it moves. Parcel B becomes more dense and sinks as it moves 
from right to left. This explains the slope of the intrusions. 

5. Parcel A is slightly lighter than the surrounding waters, and so is caused to move 
up the slope (i.e., to the right) by its bouyancy. Similarly, parcel B is slightly 
more dense than its surroundings and "slides" down the slope to the left. 

The motions in step 5 reinforce the initial advections in step 1, so the feedback loop 
is closed. 

But what about the diffusive interface, you ask? It also causes A to lose S and 
gain T, but since A lies below the diffusive interface, the diffusive fluxes cause A to 
become more dense. This alone would cause the layers to slope in the opposite sense, 
and in combination with the finger fluxes, it is the difference in the finger and diffusive 
buoyancy fluxes that determines the sign of the layer slopes. Keep this in mind when 
we look at the Meddy intrusions. 

(Melvin Stern noted that the fingers are sheared by the intrusive motions, as evid- 
enced by their tilt. He wondered why they didn't form as sheets, as Linden had found.) 

Layer scale: Why are the layers thickest near the bottom and thinnest near the top? 
Ruddick and Turner [13] presented a simple argument based on the release of potential 
energy by the fingers. Let's consider a region of height H prior to the formation of 
an intrusion. It has the same linear density stratification dp/dz = 7 on the left and 
right of the front, and the "initial" potential energy can easily be calculated. Suppose 
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that an intrusion forms, so that in the center of the tank the upper half of the intrusive 
region is composed of high-S water with concentration excess ßAS, and the lower half 
is composed of high-T water of concentration aAT = ßAS. When the finger fluxes 
"run down" the S and T distribution, the S will be nearly uniform from top to bottom 
of the intrusion. So half of the S has been carried from the top half to the bottom half 
of the intrusion by the fingers. Since the T-flux and 5-flux are linked by the "flux 
ratio" n we know the amount of T that has been carried upwards by the fingers, and 
hence can predict the final density distribution. It is then a simple matter to estimate 
the "final" potential energy in terms of the cross-frontal 5-difference and the (unknown) 
intrusion height. If we require that the final potential energy be less than the initial 
(i.e., that the fingers have caused a release of potential energy), then a relatively simple 
expression is obtained for the maximum vertical scale of a double-diffusive intrusion: 

*<f(l-»)^ (3) 
pdz 

Figure 17 shows the observed layer depth H vs the "depth below fresh water", d, from 
several experiments, the central straight line is the equation above, and the other two 
lines result from slightly modifying the assumptions in the arguments above. Although 
the observational scatter is moderately large, the agreement is good. In the next lecture, 
George Veronis will go through a linear instability theory [14] that predicts the scale 
of the fastest-growing intrusions, and has some points of agreement with this simple 
estimate. The width of each intrusion was monitored over time, and the rates of advance 
of the noses were calculated. The nose velocity J7n0Se was also found to be proportional 
to D = (ßAS)/(p~1 dp/dz), as can be seen in Figure 18. Combining the results for H 
and for Un0Se gives Unoae — 0.005NH, where N2 = -gp~ldp/dz. The reason the nose 
velocity is of interest is that it is proportional to the lateral flux of S and of T in finite- 
amplitude intrusions. It is this horizontal flux, driven by vertical fluxes, that makes 
lateral intrusions potentially important in the ocean. Intrusions are incredibly common, 
occuring at virtually all oceanic fronts, and probably represent a major mechanism for 
mixing salt and heat across the fronts. 

2.2    Ocean Observations 

Thermohaline intrusions are found at almost all oceanic fronts - relatively sharp bound- 
aries betweentwo water masses with different temperature and salinity characteristics. 
During one of the earliest uses of the STD (Salinity, Temperature, Depth), Stommel 
and Fedorov [15] found intrusions, deduced that lateral mixing was occuring, and spec- 
ulated that the intrusion would blend into the surrounding waters via vertical mixing. 
Prior to this, the point measurements offered by bottle casts gave too coarse resolu- 
tion to allow intrusions to be observed clearly. Toole [16] showed that intrusions in 
the Antarctic Circumpolar Front migrated vertically across isopycnal surfaces as they 
crossed the front, in the same manner as the laboratory intrusions described earlier, and 
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Figure 18: Nose velocity of intrusions as a functions of D. 
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Figure 19: Mechanism of Meddy formation. 

deduced that the lateral fluxes of salt and heat were large - about the same as lateral 
fluxes by instablity of the frontal current. Other examples of intrusion observations by 
Gregg [17] and Anderson and Pinkel (1996) were shown. 

The fact that intrusions migrate across isopycnals suggests that they are driven by 
vertical double-diffusive mixing, and appear to cause strong lateral fluxes. But are they 
in fact strong? Observations of a Mediterranean salt lens (a "Meddy") showed how 
strong the effects of intrusions can be. 

The Mediterranean Sea is in a warm, dry climate, and so more water evaporates 
£from its surface than falls as rain. The net loss of water leaves the salt behind, causing 
the Med to become more salty than the Atlantic. The salty water flows out through 
the Straits of Gibraltar, and is replaced by inflowing slightly fresher Atlantic water. 
This exchange of salty water for fresher keeps the salinity from becoming too large (see 
Figure 19). 

The Med outflow water is quite dense compared to the Atlantic water, and tumbles 
down the Continental slope as a gravity gurrent, mixing as it goes (about 2 parts 
Atlantic to 1 part Mediterranean). The gravity current is pretty much at it's neutral 
density level when it reaches 1 km, and the current then goes unstable and forms 
Meddies. These are 300 km diameter by 1500 m thick, composed of the mixture of 
Med and Atlantic water from the current. They rotate anticyclonically with about a 6- 
day period and drift around the Eastern North Atlantic for years, sometimes travelling 
thousands of kilometers. They are very warm and salty compared to Atlantic water at 
the same depth and density, so their travels and eventual decay should affect where the 
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salt goes. 
Larry Armi of Scripps began an interesting experiment: he found a Meekly (named 

"Sharon"), surveyed it with a CTD (Conductivity Temperature Depth profiler— the 
modern digital equivalent of the STD), and put SOFAR floats inside it's core. These 
could be tracked acoustically so that we could find the Meddy later on. 

Figure 20 shows two views of the salinity structure of Meddy Sharon, taken a year 
apart. The x-axis is horizontal distance, the y-axis is depth in metres, and the z-axis 
is salinity. The meshplot can be regarded as a succession of S(z) traces in the y-z 
plane, displaced successively in the x-direction as the ship moves through the Meddy. 
Note that in (a) Meddy has the appearance of a mountain with steep, jagged sides 
and a smooth, sloping top. The jagged sides are intrusions, which show up as wiggles 
in salinity. The smooth top shows that intrusions haven't reached the centre yet, and 
the slope means that the core is stably stratified in salt - no fingers can form in the 
core without intrusions! Note also that you can see evidence of layering underneath the 
core. This is probably due to salt fingers, but we concluded that the flux of salt out 
the bottom by salt fingers was unimportant. In (b), taken a year later, we see that the 
top of the mountain is no longer flat, and that the Meddy has eroded considerably — 
it's visibly smaller. The main point is that the intrusions have worked their way into 
the centre over the course of a year, a rate of advance of about 1 mm/s. This is what 
caused the erosion and the loss of salt. (The T and S didn't change until the intrusions 
got there.) The steps at the bottom have become much more pronounced, too, so salt 
fingers seem to be working there, even though their salt flux doesn't have much effect 
on the Meddy. 

Let's compare the Meddy intrusions with the laboratory ones: 
Vertical scale: The Ruddick-Turner formula predicts H to be hundreds of metres, 

when it's really 25 m. This difference is resolved by appealing to Niino's theory (see 
tomorrow's lecture by George Veronis), and noting that the "Niino number" is large 
enough that the front can be considered wide, while the laboratory front is narrow, and 
the layer scales should (and do) obey the Toole and Georgi [18] theory. 

Horizontal advance speed: The lab experiment found U to be about 0.005 NH, 
where N is the buoyancy frequency and H the full layer thickness. As long as we use 
the observed H and not the predicted, this predicts an advance speed of about 1 mm/s, 
in agreement with observations. 

Intrusion slopes: One set of closely spaced stations gave particularly useful in- 
formation, since individual intrusions could be followed from one profile to the next. We 
followed the maxima of salinity from each intrusion, and computed the density at that 
point. In the lower half of the Meddy that warm and salty intrusions became lighter 
as they moved outwards, as we found in the lab experiment. However, in the upper 
part of the Meddy, the exact opposite occured! Warm and salty intrusions moved down 
as they moved outwards in the upper half. This was surprising until I remembered 
one laboratory experiment I conducted in which the overall stratification was diffusive 
on both sides of the barrier. In that experiment, the diffusive stratification inhibited 
the fingers and gave a boost to the diffusive interfaces, with the result that the layers 
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Figure 21: Plot of S at local S-maximum (horizontal axis) against density (vertical 
axis is decreasing density). The solid lines connect maxima found on successive traces, 
and indicate the migration across isopycnals. The "angle" indicators show the ranges 
of acceptable slopes for the Mclntyre instability [19], and for double-diffusively driven 
thermohaline intrusions. 

sloped with the opposite sense. This makes sense when considering the combined effect 
of fluxes on a water parcel: it's the difference of the buoyancy fluxes from the diffusive 
interface above and the fingers below that determines whether a warm, salty fluid parcel 
becomes lighter or heavier. 

So, the slopes seem to make sense in terms of the fluxes across the intrusion bound- 
aries, as long as we don't forget about the diffusive fluxes. A close examination of 
the slopes allows us to compare the T/S changes along the layers with the expected 
ratios of fluxes. The slopes are well within the range expected from our knowledge of 
finger and diffusive flux ratios. More interestingly, there is an alternative theory of layer 
formation due to Mclntyre [19] that does not involve double-diffusion of heat and salt, 
but instead relies on a Prandtl number different from 1 to destabilize a baroclinic shear 
flow. This is a type of double-diffusion since the mechanism uses differential diffusion 
of momentum and of mass to extract either KE of the shear or PE of the sloping iso- 
pycnals. It turns out that the layer slopes are completely out of the range in which they 
can extract either KE or PE of the basic flow (Figure 21), so the Mclntyre mechanism 
is not at work here. Hence the T/S differences are necessary to drive the intrusions, 
and the energy from the shear flow and sloping isopycnals is not driving them. 
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Notes written by: Barry Ruddick, Joseph Biello, Jean-Luc TMffeault 
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Lecture 2. 
Barry Ruddick and George Veronis 

Two simple experiments were set up to demonstrate salt fingers (this regime was discussed in detail 

during the previous lecture). In the first experiment, the solution of a few crystals of pottasium 

permanganate, a reddish dye, at a high temperature was cautiously poured at the top of fresh, 

cold water, as can be seen from fig. 1. A clear horizontal interface between the colored (hot and 

salty) fluid in the top portion of the tank (20 x 10 x 5cm) and the transparent one in the bottom 

portion was initially observed. After a relatively long period of time, however, a multitude of thin 

vertical columns, spreading down from the interface, could clearly be distinguished. Eventually, 

these columns got mixed with the surrounding fluid, as a result of the lateral diffusion and possibly 

intrusions, and the whole tank became uniformly reddish. In this experiment the few crystals of 

permanganate provided the salt concentration. As a consequence, it took about 10-20 minutes until 

the manifestation of the fingers became clearly discernible, since their growth rate was small for such 

a low supercriticality. In the second experiment, the salt (sodium-chloride) was deliberately added 

to the hot blue dye to reach a higher degree of supercriticality. As a result of this, smaller fingers 

were observed within a few minutes after the clear interface had formed. 

There are several locations in the ocean where a sequence of well-mixed layers separated by 

relatively sharp interfaces (in S,T, and density) is observed. If the fluxes of heat and salt could 

be predicted on the basis of individual observations of AT and AS across the steps, the large-scale 

effects of thermohaline fluxes could be assessed. Turner (1965) adapted dimensional arguments from 

thermal convection literature (the "4/3 law") to make this possible. But beware! It does not seem 

to work for salt fingers. To understand the fluxes in the double-component fluid, it is first worth 

considering the simplified case of purely thermal convection (Rayleigh-Benard) from the standpoint 

of derivation of the "4/3 law". In this case, the nondimensional flux is characterized by the Nusselt 

number, which is the ratio of the dimensional temperature flux, -Frf2^], and the flux due to pure 
conduction, 

KTAT. ^ ' 

The other nondimensional parameters on which the Nusselt number could depend can be com- 
posed of the following: 

gaAT[—], buoyancy contrast due to thermal boundary forcing, (2) 

H[m], fluid depth (the effects of finite width are ignored), (3) 

rm
2 

K
T[—j, molecular diffusivity of heat, (4) 

v[—j molecular (kinematic) viscosity. (5) 

Since the motion is driven by buoyancy forces, gaAT should appear as a group.   The nondi- 

mensional parameters are the Prandtl and the Rayleiirh numbers, Pr = -£- and Ra = gaATgS 
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Potassium permanganate at a high temperature 

Sodium chloride at a high temperature 

Figure 1: A schematic of the salt-finger experiment. 
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respectively. For example, for water Pr sss 7, for air Pr « 1. Thus, one would expect that 

Nu = f(Pr,Ra). (6) 

When the Prandtl number is fixed, we postulate the relationship 

FTH      ,gaATH\n 

It can be argued that as H -* oo the distance between boundaries becomes unimportant in its effect 

on the heat flux. Demanding that FT be independent of H in (7) yields 

n = 1/3, (8) 

which has limited support from laboratory measurements (although more precise measurements show 

powers slightly less than 1/3). As it turns out, (8) allows us to write (7) as 

aFT = C(^Y'3{aAT)*'3, (9) 

where C is an empirical flux coefficient. 

In the more complex diffusive regime of double-diffusive convection, C is a function of the density 
ratio. 

„   _ ßAS _   stabilizing S 

" ~ ~^ÄT ~ destabilizing T > *' (10) 

where r = ^, and of Pr (here KS is the solute diffusivity). Different investigators have used slightly 

different versions of equation (9): i.e., the factor (£^1)1/3 has been replaced by similar factors with 

the same dimensions; for example, {guff*. The salinity flux in turn is commonly expressed as 

ßFs = CCFTRF, (11) 

where the flux ratio, RF = gi = fzfls, would also depend mainly on Rp and the fluid properties. 

Flux measurements: Diffusive interface 

Beginning with Turner (1965), several investigators have measured the fluxes across a single diffusive 

interface. They set up a well-mixed warm, salty layer below a cool, fresh layer, and monitored the 

temperature and salinity in each layer as a function of time, taking care to allow for the heat losses 

from the tank walls. Turner found that the heat and salt fluxes were consistent with the "4/3 flux 

law" (eqs. 9 and 11). This reduces the experimental problem from a two-dimensional exploration 

in (RaT, Ras) space to dependence on one parameter (Rp = ^). (This dimensional argument has 

also been used on flux measurements in the salt finger system, but has not been tested over a wide 

range of Rayleigh numbers.) Turner found that the heat flux coefficient (eq. 9) is a rapidly decreasing 

function of Rp> while the flux ratio (eq. 10) is about 0.15 for Rp > 2, increasing rapidly towards 

1 as Rp -» 1. These and later measurements have been collated and summarized by Kelley (1990) 
(fig. 2,3). 
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Pig. %. Scale factor C{RP) in (1) for diffusive convection 
in the laboratory. Dat> sources ans indicated as follows: 
A Tvrstr {1965], • Crtfper [1975J, + Mtrmarino and C*ld- 
vtM [1976], X Ntwett [1984], and O T«f/or [1888]. Only daj* 
with Rp < 10 are plotted here and used in the analysis. The 
solid line is the empirical fit (4) presented here, the dashed line 
an alternative fit (5) given by Afarmorino *nd Caldwell [1976]. 
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KELLET: ACCURACY 

Fig. 3- Buoyancy flux ratio Rp(f~if)) for difhmive convection t» 
the laboratory. I)nta source« are indicated as follows: • Crop- 
per (1975], + Turner [1965], and X [Newell, 1984]. Only data 
with RP < 10 arc plotted here and used In the analysis. The 
solid line is an empirical fit (6) to the functional form suggested 
by Linden [197-1]. 
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Figure 4: The difference in refractive index between the layers was found by measuring the deviation 
of a light beam passing obliquely through the interface. 

Shirtcliffe (1973) measured the fluxes across the analogous sugar/salt diffusive interface1, using 

elegant optical methods. He measured the deflection of a beam of light passing through the interface 

(fig. 4) to deduce the difference in refractive indicies of the two layers. He also passed a beam 

of polarized light through each layer and measured the angle (<f>) through which the polarization 

was rotated, which is proportional to sugar concentration. His measurements of ßAS(t) vs aAT(i) 

(fig. 5) show that the sugar/salt flux ratio is constant at 0.6 ± 0.02. 

The observation that the flux ratio is approximately constant with the value RF ~ («S/«T)
1/2 

at sufficiently large stability ratio lends strong support to a model proposed by Rooth (quoted by 

Veronis 1968, described in Turner 1973) in which initially sharp gradients of T and 5 diffuse at their 

respective molecular diffusion rates, and are intermittently swept away to the point of static stability. 

The observed increase in flux ratio towards 1 at low stability can be explained by the effect of direct 

turbulent entrainment becoming increasingly strong with the turbulent intensity, a process that can 

be qualitatively observed in the laboratory experiments. 

1A layer of saline water floated on top of a layer of sugar water. Since the diffusivity for sugar is about 1/3 of that 
for salt, the sugar water is often denoted as "S-stufP and the salt water (analogous to cold) is called "T-stufP. 
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Figure 5: Graphs of ßAS versus aAT for all ten runs. The linear form of these graphs indicates 
that the ratio RF of the S flux (sugar) to the T flux (salt) was constant throughout each run. The 
run number is indicated by each set of data, and the same symbols are used in figures 3—6 from 
Shirtcliffe (1973). 
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Flux measurements: Finger interface 

Several authors have performed "run-down" experiments to measure T and S fluxes across a finger 

interface bounded by convecting layers. These were not described due to lack of time in the lecture, 

but results similar to those in the diffusive case obtain: the flux coefficient is a decreasing function 

of density ratio (now defined as ||§), as is the flux ratio. The flux ratio is roughly 0.6 for heat/salt 

fingers and 0.9 for salt/sugar fingers. It is important to realize, however, that: 

1. Considerable variation (20-j-30%) in the flux coefficient and/or flux ratio has been found between 

different experiments. Whether this is due to variations in Rayleigh number, initial conditions, 

interface thickness, or some other experimental factor has not been determined. 

2. Very little systematic checking of the "4/3 law" has been done for the salt finger case. 

3. The "4/3 law" assumes the existence of an "equilibrium interface thickness" for each set of 

macroscopic conditions towards which deviations will relax on a short time scale. 

4. Oceanic observations (to come in future lectures) find that salt finger interfaces are thicker than 

extrapolations from lab experiments suggest, and that the fluxes are more than an order of magnitude 

lower. 

The finger regime 

The perturbation equations 

The finger regime of double-diffusive convection is characterized by a stabilizing vertical gradient 

of a more rapidly diffusing component (say temperature) and a destabilizing gradient of the slower 

diffusing component (say salt). This situation is depicted in fig. 6, where the temperature and salinity 

gradients are specified by the difference in these components, AT and AS, over the height of the 

gap between two horizontal plates, d. The background state in this case would be characterized by 

the pure diffusion of both components with the velocities equal to zero. The (linearized) Boussinesq 

approximation of the Navier- Stokes and continuity equations as well as the salinity and temperature 

diffusion equations for the perturbation would look as follows: 

f£ = -—Vp + g(aT - ßS)k + uV2v; (12) 

V-u = 0 (13) 

§+<f)» = *^ <14> 

In the above equations, v = (u, v, w) is the velocity vector, T is the temperature, S is the salinity, 

(^), (Ü) are the mean temperature and salinity vertical gradients, respectively, v is the kinematic 

viscosity, pm is the mean density, p is the pressure, a = -^J£ is the coefficient of thermal expansion, 

and ß =-§% is the coefficient of salinity contraction. 
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Figure 6: The finger regime of double-diffusive convection. 

After differentiating the momentum equation for u with respect to x and z, the equation for v 

with respect to y and z, adding the results and subtracting from the resulting equation the equation 

for w, on applying horizontal Laplacian Vj = J^ + ^ to the latter, one obtains (with the use of 
the continuity equation) 

- dtV
2w = -g{ctV\T - ßV\S) - uV*w. (16) 

The thermal convection problem 

First we are going to restrict our attention to the thermal convection formulation alone. That is, a 

configuration where fluid between two infinite parallel horizontal plates is differentially heated from 

below, i.e., the upper plate has temperature T0 while the temperature of the lower one would be 

T0 + AT. In this case, therefore, it is the temperature that plays the destabilizing role. Once the 

results of this problem are known, it is easier to approach the more complex configuration comprising 

also the presence of the vertical salinity gradient (the finger regime of double-diffusive convection). 

In the presence of the temperature alone, equation (16) would look as follows: 

(dt - i/V2)V2u» = gaV\T. (17) 

We are interested in solving this equation coupled with the equation for the temperature perturba- 
tion, 

(Ä - KTv
a)r = -(|[>, (is) 

and the following boundary conditions (stress-free boundaries are assumed for the velocities): 

d2w 
= 0,T = 0;z = 0,d. (19) 

dz2 
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Because the coefficients in equations (17),(18) are constants, their solution can be sought in the 

following form: 

32.+*£<*.+«)*(!=£: 

where w, T are some constant amplitudes. Having introduced (20) into (17),(18), and allowing for 

to T) ~ (to, f)exp{^t + tykx + ly))sin(—); n = ±1, ±2, ±3,..., (20) 

(S)--¥.«« ««*■ 
(l + K2)K2w = ^a2dif] (21) 
a v 

AT 
{p + K2)T=j~w. (22) 

On nondimensionalizing the above equations (to ~ ^,T ~ AT), 

(?- + K2)K2w = Ra2ft (23) 

(p + K2)T = w, (24) 

where a = -*-, R = «s£I£   a2 = *2(k2 + /2), K2 = a2 + n2x2, and tZ;,T are nondimensional 

amplitudes of temperature and velocity, respectively. 

After substituting f from (24) into (23) and canceling w, one obtains 

(p + JT2)(- + *2)#2 = Ä«2- (25) c 

Since p is a complex number, one needs to consider its real and imaginary parts independently, i.e., 

when p = pr + ipi, 

p2
r+p2

i+(l + a)K2pr + v(K*-^) = 0, (26) 

i(2prPi + (l + cr)i^Ä) = 0. (27) 

Let us first assume that p; = 0. Since we are interested only in the growing modes, it is the positive 

root alone of the quadratic (equation 26) that should be considered: 

The requirement that the expression for p, not be negative, is equivalent to 

(28) 

K*      **(k2 + l2 + n2f     *y+n2)3 

K-~tf~      *»(*» + /»)      ~ a2        ' l    J 

where a2 = k2 + I2. The rightmost expression above takes on its minimum value when n — 1 and 

a2 = 1/2. Therefore, 

4 
It is important to emphasize that only a cell of a certain size (i.e., of an appropriate wave number) 

could form at the onset of the instability. If the wave number is larger than the critical one (i.e., 

a thinner cell), the temperature will diffuse and dissipate horizontally.  For a small wave number 
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(a wide cell), on the other hand, the release of the potential energy of the fluid is too slow. The 

damping effect of the thermal diffusion and viscous dissipation within the Rayleigh number can be 

seen when R is rewritten in the following way: 

*=^, (3D 
7? 

where *j£ and j? are measures of the diffusion and viscous dissipation times, respectively. 

If pi 7^ 0, equation (27) gives 
(l + <r)K2 ,    , 

Vr = -*      2
;     , (32) 

which means that the corresponding oscillations are always damped. By substituting the above 

expression for pT into (26), one can also see that p\ can be positive only if R < 0, which means that 

oscillatory motions are possible (but damped) for a stably stratified fluid. 
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Lecture 3 

1    Instability with AT and AS (heat and salt from above) 

T-AT; S~AS; ™ ~ ^ ; ö* ~ §• W 
We will now solve the problem of salt fingers. We scale quantities as 

T ~ AT ; S ~ AS ; t 

The non-dimensional vorticity equation is then 

(r?^ - V2)V2ti> = ÄrV2T - RsVlS    with V\ = ~ + ^ (2) 

and the equations for heat and salt are 

(rdt - V2)r = -w (3) 

(dt-V2)S = -™ (4) 

where we use the non-dimensionnal parameters 

KS              v             «s     D       gaATcZ3               g/9AS<23 

r = — ; a — — ; 77 = — ; HT =  > Ks = • 

Eliminating 5 and T from this system of equations yields 

{rdt - V2) (dt - V2) (rjdt - V2) V2tr = -AT(0, - V2) V> + ^ (rfc - V2) V2«;       (5) 

Let us first find the stationary solution (dt = 0). Equation (5) is then reduced to 

V6w = (-RT + ^-Mw (6) 

As for the Rayleigh-Benard problem, we have solutions of the form 

(T, S, «7) ~ (f, 5, ä) eP*+-(te+^) sin (TMTZ) (7) 

and the boundary conditions 

w = Wzz = 0    S,T = 0    at 2 = 0,1. (8) 

Thus, 
7r>

2 + n2)3=_^+fis       and      a2 = ,2 + Z2. (9) 

a2 r 
The minimum value the left hand side term can take (for n = 1) is ^n4. Since normally 
Ry-^ZLn4, the condition for the real part of p to be positive (and thus, for instability) is 

simply 
ßAS > ^-aAT (10) 

KT 

The interpretation of this condition is that the salinity gradient has to contribute only 
KS/KT = 1/70 of the fractional change in density over a vertical distance that temperature 
does in order for the instability to appear, i.e. for the potential energy of the salt stratification 

to be released. 
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2    Stern(1967)'s maximum growth rate analysis 

We now wish to consider the wavenumber of maximum growth rate. Experiments by 
Linden(1973) have determined that the order of magnitude of the width of salt fingers 
is directly related to this. Qualitatively, we require thin fingers to diffuse heat efficiently 
from the advecting salt fingers, but not so thin that salt also diffuses. We thus anticipate 
a preferential scale which is small in the horizontal compared with the vertical. In his 
analysis Stern chose the particular case of our system where 

a > 1 ; dt + 0 ; r < 1 ; 77 < 1 ; K2 = it2 (a2 + n2) . (11) 

We consider n = 1 which corresponds to the most unstable mode in all cases of RT and 
Rs (Turner 1973, p258). Crossing off 7]dt and rdt in equation (5), we obtain 

(P + K2)^ = -RT(p + K2) + Rs^. (12) 

Rearranging, 
iK2 

P+K2 
=
 -^TT- (13) 

To find the maximum growth rate we now take -J^ = 0 which gives 

Equating the right hand sides of equations (13) and (14) gives 

X
8
Q

8
 + (— + 2RT)T4a4 - —RT + R\ = 0. (15) 

T T 

This is a quadratic for x4a4 which we solve, and taking the first two terms in a binomial 
expansion we obtain 

-4.4 _ &_- WT 

*v = T&7i%' (16) 

Denoting ^ = CRT we obtain 

For C = 2, 

With L — - we have 
at 

.4„4_(C-1) 
*a ■ wrt)R- <17> 

4 4 N2& , - 

*> = 55? (18) 

*-*&• <l9> 
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Figure 1: Initial setup to make a buoyancy layer 

hence 
L(x{afz)"

i. (20) 

Thus L increases as aTz decreases and vice versa. 

3    Prandtl's Buoyancy Layer(1952) 

Prandtl considered a 2-D system in the X - Z plane, between horizontal bounds 

-L<X<L (21) 

but disregarding vertical bounds.  He imposed a constant vertical temperature gradient 
with heating/cooling at opposite boundaries such that 

AT 
T = TQ + —Z(l±e)     at  x = ±L 

a 
(22) 

where d is the vertical distance over which T changes by AT. He assumed ^ = 0 (which 
may be confirmed a posteriori), and since the ^-dependence is linear our equations reduce 

to 
gaT + vwxx = 0 (23) 

for the vertical momentum equation and 

AT _, 
—-W = KTTXX 

a 
(24) 
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for the heat equation. We scale 

ACT 

and obtain 

(25) 

(26) 

(27) 

r i 
Introducing boundary conditions w = 0 at x = ±^ = a and defining 6 = R^T to lend 
symmetry to the problem we obtain 

w~-^-;T~AT;x~d 
a 

wxx = -RTT, 

w = T„. 

wxx - -R%0, 

Oxx = RjW. 

We also specify the boundary conditions 

6 = ±eRiz    and    w = 0    at  x = ±—. 
a 

(28) 

(29) 

(30) 

Defining <f> = w + i$, we obtain 

<j)xx = iRl4> (31) 

such that (28) and (29) (once rearranged), are respectively the real and imaginary parts 
of this equation which has the solution 

<f> — 4>o exp 
v/2 

(l + i)(iTa) near  x = ±a   ;   a (32) 

We apply the boundary condition for 0 to obtain 

4> = ±iR*ez exp 

The solutions for w and T are 

to = ±£2 £2 exp 

B% 
V2 (l + i)(x^a) 

y/2 («T«) sin 

near i = ±a. 

r   i 
Rrp 

TZ'** 

(33) 

T = ±ez exp 

We thus obtain a boundary layer of thickness 

l. 

^f(*T<0 cos 
v/2 

a^ x 

v/2d 
iy     ~  j— 

R* 

4VKT 
i 

gaTzl 

(34) 

(35) 

(36) 
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Figure 2: Prandtl's buoyancy layer 

which is called the buoyancy layer. L* is the same as the scale of maximum growth rate 
(19). It gives the thickness of the boundary layer in which w and T depart from their 
interior values, 0 and ^-z repectively in order to satisfy the boundary conditions (30) 
at the sides. We also have to introduce a velocity in the x direction since we must have 

—£>-$ (37) 
The resulting flow pattern in illustrated in fig. 2. 

4    Reversed mean gradients - heat and salt from below 

We will now address the problem of heating from below; the fluid is stabilized by salt. 

Introducing the stream function * defined by w = -*x and u = *2, we get 

(dt - i/V2)V2* = -gaTx + gßSx 

AT 
{dt-KTV2)T + —yx = Q 

AS 
{dt - KSV

2
)S + -j-^x = o 

(38) 

(39) 

(40) 
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Scaling quantities as\Er~/cr;i~^-;x~d;T~ AT ; S ~ AS, the set of equations 
becomes 

(-dt - V2)V2* = -RTTX + RSSX o 

(dt - V2)T = -*x 

(öt-rV2)5 = -*x 

The boundary conditions are, as before, 

* = *XI = T = S = 0     at  z = 0,1. 

The form of the solution is then 

$ ~ e** sin(Trax) sin(n7rz) 

T,S ~ #* cos(7raz) sin(nxz) 

(41) 

(42) 

(43) 

(44) 

The three previous equations can be combined to give the dispertion relation 

P + 
?+(i + I^)*V+[(> + i)*<-(aT-*^ 

TK
6
 + (Rs - TRT) it2a2 = 0 

where p contains a real and an imaginary part p = pr + ipi. 

(45) 

4.1    The zero growth rate solution 

Here, we search for the solution given that pT = 0. We then split equation (45) into two 
equations (for the real and imaginary parts) 

[-?+(^+T + 1)^4-(ÄT-Ä5)^]?i = 0' 
-k2 (l + i±l) p\ + TK

6
 + (RS - TRT) TTV = 0. 

If pi = 0 (a nonoscillating, convective mode), we get the critical Rayleigh number (£y) 

ÄT = 4^ + -- (46) 

This requires an unrealistically large destabilizing temperature gradient. For pi ^ 0, we 
obtain an oscillatory mode with 

(47) p2
i=v(l+T + l)K*-a(RT-Rs)^r 
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a + r (a + l + r)(^ + r + l)-r K6 

1 + C7   S+ a+1 TT2*2 
RT = ^±IÄS + ta + l + Tj^ + r-Hj-r^ (4g) 

For the salt/heat system, we have r ~ 10"2 ; o ~ 7 and if Äs > x71"4'tlie oscillatory 
instability criterion becomes 

RT ~ T-T--R5 (49) 

aAT V— ßAS (50) 

Thus, overstability can occur when the fluid is mildly stable. In contrast, for salt fingers 
instability can occur when the destabilizing salt gradient is only r times the stabilizing 

temperature gradient. 

Baines & Gill (1969) have calculated the onset of these instabilities (overstability and 
salt fingers) for various combinations of Rayleigh numbers. That is illustrated in fig. 3. 
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Macro-Scale Signatures of Double Diffusion in the 
Ocean 

Raymond W. Schmitt 

1    Introduction 

An experiment to model double-diffusive processes in the ocean was shown. A layer of sugar 
water was placed on top of a stably stratified salt solution. Altough this setup would be 
statically stable if considering only the density profile, a double-diffusive instability develops 
that eventually leads to the formation of staircases in the vertical profiles of concentration 
of sugar and salt as shown in Figure 1. Here the salt plays the role of heat in the oceanic 
water, and the sugar, having a diffusivity much less than that of salt, mimics the oceanic 
salt. 

These staircases are expected to be the most easily recognizable signature of double- 
diffusive processes in the ocean. In fact, in several surveys such structures have been found. 
Some examples are reported in Figure 2. It is important to note that the density ratio Rp 

(defined below) seems to play a crucial role in the ocean. In particular, it appears that the 
condition Rp < 1.9 is necessary, although not sufficient, for the formation of staircases. 

2    The linear, depth-independent theory 

The linear (but not linearized) equations for a double-diffusive system in a region of constant 
vertical gradients are: 

^+g(ßS'-aT')   =   ,Vy 

daT' +w'aTz   =   KTV2
2aT' (1) 

dt 

' + w'ßSz   =   KsVlßS' 
dßS' ,    //0-= _,--, 

dt 

where the thermal expansion and haline contraction coefficients a = — -p-£ and ß = ^g§ are 
assumed to be constant, «r and «s are the molecular diffusivities for heat and salt, and v is 
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Figure 1: Staircases in the horizontally averaged salt and sugar concentration profiles. 
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Figure 2: Staircases from the Tyrrhenian Sea, Mediterranean Outflow, and the Subtropical 
Under-water. Irregular steppiness from the North Atlantic Central Water is also shown. 
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the kinematic viscosity. Quantities with a prime (') represent the perturbations away from 
the horizontal averages, denoted by a bar (-). The subscript z indicates a derivative with 
respect to z. _ 

The requirement for double-diffusive instability is that the density ratio Rp = ^ be 
less than the diffusivity ratio T = jj*. On the other hand, for Rp < 1 the fluid is statically 
unstable and double diffusion plays no role. A value of Rp between these two bounds is 
observed over vast regions of the ocean. 

These equations admit solutions of the form: 

KT',S')cxexp(AiMz,y) (2) 

where A is the growth rate and ^(x, y) is a horizontal planform function which obeys the 
Helmholtz equation. Substituting this solution in the linearized equations one gets the 
following expression for the growth rate: 

A = (gaTzf
2G (3) 

where the nondimensional growth rate G is 

, a is the Prandtl number, and M = m(gaTz/vKr)~1,A where m is the total horizontal 
wavenumber. The parameter 7 = ^ is the flux ratio. Note that 0 < 7 < 1 is necessary for 
the formation of salt fingers. 

The growth rate versus the flux ratio is given in Figure 3 for several density ratios. The 
growth rate decreases with increasing density ratio. In particular, the value Rp = 2 is typical 
of the ocean, while the fastest growing fingers occur for Rp = 1. For Rp = 100 no fingers can 
grow, and all the initial perturbations will die away. 

The dependence of the growth rate on the wave number is shown in Figure 4 for several 
buoyancy periods with Rp = 2. It is evident that there is a single fastest-growing mode 
which selects a preferred horizontal length scale. Temperature microstructure observations 
show features that agree with the theoretical prediction (see the next report). 

3    Observations 

The possibility of finding double-diffusive phenomena in the oceans depends mainly on the 
value of Rp. Figure 5 displays a map of the values of Rp over the main thennocline. The areas 
where a low value of the density ratio is found are shadowed. The Pacific ocean doesen't 
seem to be a favorable place to look for double-diffusive processes. On the other hand, values 
lower than 1.9 seem quite common both in the Atlantic and the Indian ocean. Why does 
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Chart 14. Slope ratio (B) of the T-S curve for the upper kilometer of depth lit regions showing a nega- 
tive vertical gradient of both temperature and salinity.    ISJT/JS+ JY*S|^X.   tnrnmr=bound»ry beyond 
■bleb the vertical gradient of salinity la positive .  Q| «f 1.9.  g| ?4.5. Inaet map shows distribution above 
North Pacific minimum salinity aurfaoe. H ss relatively high alopa ratio. L= relatively low slope ratio. 

Figure 5: 

the ocean have such low density ratios? In the case of the Atlantic, low Rp is attributed to 
the mid-latitude circulation coupled with strong evaporation. 

Furthermore, it is possible to argue that double-diflnisive processes are important in 
determining the vertical large-scale structure of vast regions of the ocean. Figure 6 shows 
the temperature vs. salinity profile in the main thermocline of the South Atlantic. Taking 
into account the full equation of state for salt water, the curve of constant density ratio 
fits the observed data very well. This is in agreement with the Schmitt(1981) model which 
predicts an effective eddy diffusivity for the vertical transport of Rp much higher than the 
eddy diffusivity of the the salt or the temperature alone. In that model a salt flux convergence 
or divergence occurs at points away from the constant Rp profile so that Rp perturbations 
die away. 

Much more detailed evidence of the presence of double-diffusive phenomena in the oceans 
come from experiments such as the Caribbean-Sheets and Layers Transects (C-SALT). This 
experiment detected very sharp temperature and salinity steps in the main Barbados ther- 
mocline over an area of 1 million square kilometers (see Figure 7). Figure 8 displays a typical 
staircase where well-mixed layers 5-30 meters thick are separated by sharp interfaces with 
temperature contrasts of about 1°C. Note that when Rp > 1.8 the staircase disappears. It 
is possible to track the interfaces across the staircases (see Figure 9) and we see that the 
layers are fairly coherent in the horizontal direction. The heaving up and down of the layers 
is attributed to internal waves, and at the top some of the mixed layers disappear. 

Figure 10 displays a scatter plot of observed temperatures from a mooring in the C-SALT 
experiment. The observed temperatures tended to cluster at layer values. The evolving 
temperature was tracked over a 8-month period, and advection was responsible for horizontal 
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Figure 7: The region of the western tropical North Atlantic surveyed during the C-SALT 
field program. The AXBT is an Air deployable eXpendible Bathy Thermograph, a device 
used to obtain ocean temperature profiles from an airplane. An area of over 106 km2 was 
found to have significant thermohaline layering in the main thermocline. 
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about 30 km. The horizontal structures are fairly coherent. 
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Figure 10: Time evolution of a temperature staircase.  This structure is fairly coherent in 
time, too. 

gradients of temperature and salinity. Eddies and internal waves tended to mix properties 
around. 

The horizontal structure of these layers was characterized by a remarkably constant 
lateral density ratio of |J = 0.85 ± 0.03. This observation excludes the turbulence as the 
dominant mechanism for small-scale mixing, which would require the same density ratio in 
both the vertical and the horizontal directions. Even assuming purely isopycnal processes, 
one would expect a lateral density ratio of about 1.0. The theoretical and laboratory lateral 
density ratios for salt fingers vary between 0.6 and 0.7. Therefore double diffusion must be 
the main factor in the horizontal mixing, altough some contribution from turbulence cannot 
be excluded. 

4    Conclusion 

Although the theoretical instability requirement is merely Rp < r, only weak evidence for 
double diffusive phenomena have been found when Rp > 2. Nevertheless, it seems that the 
maximum allowable density for the formation of staircases decreases with latitude. Kunze 
(1990) suggested that the shear due to inertial oscillations (which frequency is inversely 
proportional to the Coriolis parameter) may disrupt the fingers. His model may account for 
the relationship between the allowable density ratio to find staircases and the latitude. 

In some cases the C-SALT surveys didn't find staircases even under favorable conditions. 
In Figure 11a stratification similar to that of Figure 8 is shown, but no staircase is found. A 
possible interpretation is to attribute the disruption of the staircase to patches of turbulence, 
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Figure 11: Salinity, temperature, potential density and density ratio profiles similar to fig. 
8. Although the conditions were favorable to the formation of staircases, no strong vertical 

structure is observed in this case. 

but there is no experimental or theoretical evidence that this is the right answer. 
Finally, it is important to stress that the size of the staircases themselves is very puzzling. 

Laboratory experiments have only shown mixed layers with thicknesses of tens of centimeters, 
separated by salt finger layers no more than a few centimeters thick. Furthermore, it seems 
possible that there can be a finer structure in the steps of the oceanic staircases, not observed 
until recently because of the limited resolution of the soundings. 
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A Model for Salt Fingers 

In this section we focus on the finite amplitute behavior of saltfingering motions. 
We examine two ditinct models. The first, and most commonly used was developed 
by Stern. He made the assumptions that the fingers do not depend on the vertical 
coordinate. An alternative model developed by Howard & Veronis takes a slightly 
different approach. They assume that the salt diffuses much more slowly than 
heat and then at leading order are left with a simpler problem. They then obtain 
corrections for the small salt diffusivity. The analysis therefore is applicable in the 
salt-heat case where the ratio of diffusivities is approximately 70, but not for the 
case of sugar-salt where the ratio is only approximately 3. 

Stern's Model 

We assume that dz = 0 and u = v = 0. This implies that px = p„ = 0. 

For simplicity we consider only two dimensional solutions (dy = 0).  Then the 
equations of momentum, heat and salt become 

wt = gaT - gßS + vwxx 

Tt + wfz = KTTXX 

St + wSz = KsSxx 

We look for modes w,T,S ~ exp{\t)sin(kx). Writing a = V/KT , T = KS/KT, 

A = Kxk2A, 
RT = gafz 
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and 
Rs = gßSz 

uKrk* 

we obtain the dispersion relation 

(A + 1)(A + T)(A/O- + 1) - (A + 1)RS + (A + r)RT = 0. 

Then for steady modes we obtain Rs - T(RT + 1) which implies a wavenumber 

for steady fingers. Alternatively, we can consider nonsteady modes and look for the 

solutions with maximium growth rate. 

Howard & Veronis' Model 

We remove the assumption of infinitely long fingers and replace it with the less 

restrictive assumption that dz < dx, dy. We consider fingers between two reservoirs, 

the upper one hot and salty and the lower one cold and fresh, seperated by a finite 

distance. 

We consider the case where KS < «T SO at zeroth order we take «5 = 0. We 

take the salt distribution to be AS/2 in descending fingers and -AS/2 in ascending 

fingers. We assume that the temperature distribution between the reservoirs has a 

constant gradient Tz. 

For simplicity we consider dy = 0. We anticipate a buoyancy layer scale and take 

We nondimensionalise t = LH'/KT, W = KTW'/L, T = LT28/2 and drop primes. 

Since Ks = 0 at leading order, S defined above satisfies the salt equation and the 

equations of momentum and heat become 

wt/a -26- wxx = 2Q 

6t + 2w- Bxx = 0 

where ß*S 
V"    aLT, z 
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where the ± refers to ascending and descending fingers respectively. 

We consider a horizontal array of fingers, at lateral boundaries w, 9 = 0 at 

x = 0.7T&. We have w,8 in ascending fingers and —w,—6 in descending fingers. 

It is easy to show that this only has steady states as time goes to infinity. The 

steady equations are the thermal analagies of Ekman or buoyancy layer eqautions. 

So the steady solutions can be expressed in terms of trigonometric and hyperbolic 
functions. 

For b > 2 the solution posesses the property that the downward velocity is 

negetive in the centre of a finger. This violates the assumptions of the model, since 

we implicitly assume that salt is being fluxed in a given direction in any given finger. 

The convective heat, salt and buoyancy fluxes are 

1     r"1 

TTÖL Jo 

1     r*& 
Fs = —rzr  I wSdc 

■KOL Jo 
and 

B = aFT - ßF,. 

If we make the assumption that the fingers behave in such a way that they 

maximise the buoyancy flux, we find that this occurs when -wbL w 1.7L and 

*>=\am * °-251- 
These values are close, but not identical with Stern's result for maximal growth rate. 

If we consider a square array of fingers rather than the sheets discussed above, this 

only gives rise to a small change in the value to the flux ratio. However, it should be 

noted that salt-heat experiments by Turner, Linden and Schmit exhibit much larger 
values of Rf than those predicted by the theory. 

Now we consider a boundary layer between two finger where the diffusivity of 

salt can't be neglected, we still take Ks <C «T but now Ks ^ 0. So we must resolve 

an equation for the salinity 

wSz = KSSX 
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Near the boundary of a finger we can consider w proportionnal to x where the 
coefficient of propotionnality is deducted from the our previous estimation of w . 

We choose the scaling 

z = h • z'\ x = H • x' 

where h is the length of the finger and 

- _ COS(TT5) + cosh(a-6)        aTzh   ,4i/Kr 3/4 

~ sin(7T&) + sinh(*b) ' T ' ßAS ' ^9aYz
} 

in a such manner that the previous equation become 

First for x > 0 and z > 0 we take S = 0 on z = 0 and 5 = f(z) on x = O.This 
equation are similarity solution having x3/y fixed. For S(x, z) = 0 on z = 0 for 

aj > 0 we have 

Jx/z1'3 

where 

S0 = T(l/3) • 3~1/3 in x = 0 for z > 0. So a multiple of S0 satisfy this problem 
in the special case where f(z) = 0. When it isn't a constante f(z) can be treated 
by take a Laplace Transform of our previous solution to get 

solution of x ■ Sz = Sxx and which satisfy the boundary condition. 
We can solve the same problem but with Sx = g{z) on x = 0 and the require that 

5(0, z) satisfies 
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where 

is a Riemann-Louville fractional intergral. 

We now match the salt field and its gradint between adjacent fingers and after 

eliminating / we obtain 

f \z - C\-2/3g(0dC = -31/3 • r(2/3). 
Jo 

Or if we take G = 3l/ar(2/3) 

r \z - c\-2/3G(c)dc=i 
Jo 

To conclude, we must first specify that all these results are valid only if we have 

Hx < l/2TrbnL so x < (J^t/a with 1 < Rp < (32r)-1. We must also examine 
the result of numerical simulation of the finger dynamics. Figures 1 and 2 give 

the contour plot of T, S, p and tj; where rp is the vorticity for a fully nonlinear 

numerical model by Veronis et al. The results shown in figure 2 are for a lower 

densty ratio and higher AS than the results for figure 1 and the temperature of 

the reservoirs penetrates deeply into the finger and the salinity contours flare out as 

fluid accumulates near the finger tip. The salinity in the reservoir extends all the 

way to the tips of the fingers and curve back into the finger along the sides. This 

phenomena creates a mixing layer where other finger instabilities can grow. 
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Lecture 7, Part 1 

George Veronis opened the morning festivities with some caveats about salt-finger patterns. The 

salt-finger scenario has cold and fresh fluid below, while the fluid near the top, like a lascivious 

longshoreman, is hot and salty. The typical setup has been outlined in the previous lectures, but 

the basic physics is as follows: the relatively rapid diffusion of heat allows thermal equilibration to 

occur at any given height much more quickly than salt field equilibration. Consequently, any fluid in 

an upward moving finger can increase its temperature through lateral diffusion, thereby reducing its 

density and allowing its upward romp to continue. An analagous argument holds for the downward 

travellers. However, it is a bit risky to cling to classical stereotypes regarding the fundamental 

balances involved in the Boussinesq equations (this is elucidated below). A common notion is that 

salt fingers become tall and thin once they have settled upon their preferred scale as described by 

Stern (1960). This scenario is realized only in the cases for which the basic state density profile is 

stable enough, which occurs when the density ratio 

satisfies Rp > 1. For smaller Rp (never less than 1, for otherwise the layer is gravitationally unstable), 

the fluid at the top of the layer is too heavy and drags the temperature field downward before it has 

a chance to diffuse laterally as much as it would in the long, thin finger case. Since the stabilizing 

temperature field is less and less effective as Rp —» 1+, larger vertical velocities ensue, and the ends 

of the fingers contain bulbous tips of salt anomalies. After a while the blobs tend to spread out, 

and it would be a stretch to call them fingers, human fingers at any rate. The informal of heart 

might dare say they look like the digits of some sort of space critter, like ET or any of the myriad of 

aliens cooked up in the brain of Steven Spielberg. In addition to having blobby bottoms, the fingers 

can also be roughly as wide as they are tall, as is shown in figure(l) and figure(2). Although these 

structures are still called fingers because the fundamental mechanism for their creation is the same, 

the crucial message is that salt fingers are not necessarily tall and thin. 

Another warning trumpeted by George Veronis is that much of the salt-finger literature refers to 

tall, thin salt fingers with large flux ratios, as if these two properties are both ubiquitous salt-finger 

features. The flux ratio is defined by 

*-?5 (2) 

where Fs and FT denote the horizontally averaged salt and heat fluxes, respectively. For clarity, 

let us say that Rp « 0.75 typifies large flux ratios, and Rp ~ 0.25 lies on the low end. Through 

a series of high resolution numerical experiments, Shen and Veronis (1996) have shown that fluids 

with small density ratios tend to have relatively large flux ratios. This clashes with the common 

notions of long and thin fingers with large flux ratios, since the fingers become increasingly distorted 

as Rp approaches unity. For example, the bulbous tipped fingers of figure(l) formed in a situation 

where Rp = 1.5, which resulted in a flux ratio Rp = 0.74. In another numerical run of Rp = 3.0, the 

fingers were much taller and thinner, and a typical flux ratio of about 0.2 resulted (note that Rp 
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KT-5Z*-wT' = ° (3) 

dT dT 
———   r*j 

dt dx 
dS dS 
dt 

—u— 
dx 

does not merely depend upon Rp alone; it can vary in a non-obvious manner with the chosen AS, as 

larger AS will increase RF)- Thus, if one wanted to attain a higher flux ratio Rp, one would have to 

settle for blobby, distorted fingers, not the classic tall and thin fingers. The basic physics underlying 

this is encompassed by the dominant balances in the momentum, heat, and salt equations. In the 

classic finger scenario the dominant balances are diffusive: 

d2T 
dx* 
gpg         

K'd*-wS' = ° (4) 

V
l^=9ßS-9aT (5) 

where KT is the thermal diffusivity, KS the salt diffusivity, g the gravitational acceleration, v the 

molecular viscosity, and w the vertical velocity. These are the classical balances for a diffusively 

dominated buoyancy layer. When Rp is near unity the balances can be different. In this case the 

dominant terms in the heat and salt equations are advective ones: 

(6) 

(7) 

where u is the horizontal velocity. An important point is that the advective balance holds near 

regions of clustering isohalines. The diffusive balance can still hold near mid- layer where the fingers 

retain more regular, sinusoidal structures. Since the fundamental balances can vary with height, 

any analysis that concentrates on assuming one or the other is likely to get the physics wrong. The 

highly unstable blobs associated with a vast surplus or deficit of salinity can lead to convective 

overturning, and eventually the diffusive regions and the advective regions will interact in a highly 

nonlinear manner. The issue as to how they interact remains a challenge to any salt-finger theory, 
as a variety of spatial scales seem to be involved. 

Lecture 7, Part 2 

Many oceanographers speculate that one manifestation of double diffusion in the ocean is the exis- 

tence of oceanic fronts, the characteristic features of which are strong horizontal temperature and 

salinity gradients. The classic model proposed by Stern (1967) is one in which interleaving layers 

("intrusions") of hot, salty water and cold, fresh water overlie each other, resulting in alternating 

layers of salt fingers and convection. The bare bones of the physical scenario are sketched in figure(3). 

Horizontal intrusions have been realized through a variety of laboratory experiments. Two of 

the most famous are the experiment of Chen, Briggs, and Wirtz (1971), in which stably stratified 

salt water was heated at one vertical sidewall and cooled at the other (which creates a basic state 

with nonzero ||), and the experiment of Ruddick and Turner (1979), where a stably stratified 

sugar solution and a stably stratified salt solution (with zero horizontal density gradient), initially 

separated by a vertical plate, were allowed to interact. In the latter experiment Ruddick and Turner 
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Figure 1: Salt Fingers before imminent destruction, Rp=l.5 (Shen and Veronis, 1996) 

(a) 
TIME-  5.12  BVP 

(b) 
TItC-   15.34  BVP. 

(C) 
TIME- 30.67 BVP. 

Figure 2: Breakup of salt fingers (Shen, 1989) 
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Figure 3: Interleaving Layers Due To Horizontal Intrusions 

observed a transient period of internal gravity waves, then followed by sugar and salt clustering that 

resulted in a front across which there were concentration differences. A regular series of intrusions 

typically appeared after a few minutes. 

An interesting question regards the stability of these fronts. Niino (1986) explored this issue by 

analyzing the stability of a basic state for which both T and S had horizontal variation, but such 

that their individual contributions to the basic state horizontal density gradient exactly cancelled. 

The latter assumption allows one to perturb about a basic state of zero velocity. Toole and Georgi 

(1981) examined this sort of scenario, but they chose to look at a front of infinite extent. Niino 

examined the case of a front of arbitrary width. In addition to other details of the flow pattern, one 

of the goals of this analysis is to predict the vertical length scale of the observed intrusions, a feature 

that the analysis of Toole and Georgi unsuccessfully attempted to reproduce. 

Niino chose to perturb about the following basic state, employing the Boussinesq, thermohaline 
equations as described in the previous lectures: 

S = Szz + ASf(x) 
=    =-   ,ßAS 
T = Tzz + f(x) 

a 
p = Po(l- a(T - T0) + ß(S - So)) 

/(*) = 

x > a 
| x |< a 

—1,   x < — a 

(8) 

(9) 

(10) 

(11) 

where Sz > 0 and Tz > 0 are the vertically imposed salinity and temperature gradients, respectively. 

Note that equations (10) and (11) imply g =» 0, and that the vertical stratification is in the salt- 
finger sense. 

Niino assumes that the contribution of the diffusive interface to the vertical heat and salt fluxes 

is unimportant, and linearizes the 2D Boussinesq equations in the usual manner to obtain 

du dp d2u 

dt~~di + €Kedz^ 

° = -^z+9(«T-ßS) 

du     dw 

ox     oz 

(12) 

(13) 

(14) 
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dT        m jrr      (ß\ 92S MKv 

ÖS S -B- d*S fUi\ — +uSx + wSz = Ke— (16) 

where ne is a salt eddy diffusivity associated with the salt fingers, v an eddy viscosity, e = £ is the 

Schmidt number, and 7 the flux ratio. Some additional comments about the assumptions used are 

warranted. First, since the aspect ratio of the observed intrusions in the experiments of Ruddick 

and Turner is seen to be small, the hydrostatic approximation is employed. Second, the temperature 

flux in equation (15) is assumed proportional to the salinity flux with a proportionality constant 

(£) 7. The latter is justified by run down experiments, although one should be warned that 7 seems 

to depend on the chosen density ratio, whereas Niino assumes it to be constant. Third, the eddy 

diffusion term of equation (12) is assumed to give a measure of the horizontal momentum transferred 

vertically by the salt fingers. 
One can now play the familiar game of Fourier decomposition to ascertain which disturbances 

are most unstable. For any field variable, u for example, write 

u(x, z, t) = u(xymz+at + c.c. (17) 

After a heap of algebraic manipulations, and with the variables no longer wearing their hats, the 

front dynamics can be reduced to a single, nondimensional differential equation for the pressure: 

fl-iL^-k2p = 0 (18) 
oar ax ax 

where x—>ax, m—* ?, and a —*■ %& have been used to nondimensionalize the equations. The various 

parameters are 

3 

L = * + (l + ß)m> (19) 

fc2 _ gTn2(q + em2)(q + m2) (2Q) 
K   ~      G(a+[l + /x]m2) V    ^ 

gßAS(l-Rp) = pAS (    . 

N2 Sz 
K    J 

M = ^=Tf W 

G=™ (23) 

where RF is the.flux ratio, Rp the density ratio, k a spatial decay length for the front, N the Brunt- 

Vaisala frequency, and G a measure of the Rayleigh number. The parameter fi gives a measure of the 

ratio of the vertical density stratification due to salinity to the overall vertical density stratification. 

Note that the apparant singularity at /z = 0 is in fact taken care of by the time scaling; there is no 

salt stratification if \i = 0 , and the instability will take infinite time to develop. 
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Using (11), we can solve (18) for p(x) and obtain 

p(x) - « 
Ae-**, X>1 
Be*1, x < -1 
Cetnix + Detn*x, |x|<l 

(24) 

n1, = \{L±[L>-k>]f (25) 

The four constants A,B,C,D are determined by enforcing the continuity of p and ■£ at x=±l. 

The latter matching condition is in fact equivalent to demanding that the horizontal velocity be 

continuous, and also follows from integrating (18) through the front on either side. Once the smoke 

clears from another tour de force of algebra, we obtain the dispersion relation 

tan 
m6 4m2 a {a + TO

2
) (CT + ero2) 

L(<7+[l + /i]m2)2 G(<7 + [l+/i]m2) 

GmA 

4<7 (o- + m2) (a + em2) {a + [1 + fi] m2) 

(26) 
This dispersion relation is fairly gruesome and must in general be solved numerically. However, 

Niino derives some asymptotic results for large m in the case when the eigenvalue a conspires to 

make the argument of the tangent term equal to ^ (n=l,2,...). Denote this discrete set of growth 

rates by {cn}. The primary result is 

[i^-fSSK' + ^m-),   e = 0 
G ^,-2   I   /n/-^-4 rTO + 0(m-4), e^O 

(27) 

Thus, we see that in the inviscid case the growth rate for m —► oo asymptotes to the constant value 

[4/1, J 2. In the viscous case, the growth rate becomes small for large m. An interesting feature 

in either case is that the growth rate becomes smaller for larger fi. That is, the linearly increasing 

basic state salinity profile has a stabilizing effect for small scale disturbances. 

In the general case, Niino solves (26) iteratively using Newton's method. The resulting dispersion 

curves for typical cases are shown in figure(4) (e = 0) and figure(5) (e ^ 0). The most interesting 

feature is that the front is always unstable, even in the presence of viscosity. Consequently, there is 

no marginal stability curve. The dotted lines in these figures are for the non-hydrostatic case, and 

they clearly show that non-hydrostatic effects are unimportant for this model. A few of the other 

interesting results for fi = 0 are summarized below: 

1) The growth rate increases with G and is always unstable for some m. 

2) There is a low wavenumber cutoff for which eigenvalues no longer exist. In dimensional terms, no 

disturbances with a vertical wavelength larger than 4d can grow. This will turn out to be consistent 

with the experiments of Ruddick and Turner. 

3) For G < 105, more than half of the asymptotic value of the growth rate is realized for m < 10. 

This verifies the previous asymptotic results and shows that high wavenumber modes are eventually 

damped. 

4) The wavenumber of the fastest growing mode decreases if either G decreases or e increases. Niino 

derives an asymptotic result for the minimum, maximally growing wavenumber for all combinations 
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»m 

Figure 4: Growth Rate a vs. vertical wavenumber m, e = 0 (Niino, 1986) 

of the stability parameters G and e in the particular case fi = 0. This asymptotic wavenumber 

is 2.88, and corresponds to the growth rate a ~ 0.04719 (£J. This suggests that the important 

stability parameter for e ^ 0 is ° and not G alone. This is evident in figure6. Hereafter, this 

parameter will be denoted by R=°. 

5) For small R < 40, the fastest growing mode (FGM) asymptotes to a constant value corresponding 

to the vertical wavelength 2.2d. For large R > 2 • 10s, the dimensional wavenumber scales as 

m ~ d-1Ä«. The growth rate of the FGM for large R thus scales as a ~ Rä. 

6) The flow pattern consists of tilted rolls, with hot, salty fluid rising and cold, fresh fluid sinking. 

The angle of tilt is in the same sense as the isotherms of the basic state temperature profile. The 

rolls have roughly the same scale in the horizontal and vertical directions. A point of disagreement 

between Niino's theory and the Ruddick/Turner experiments is that Niino's rolls rotate in opposite 

directions as one moves through the layer, whereas in the experiments they are co-rotating. Niino 

attributes this to his neglect of the contribution of the diffusive interfaces to the vertical fluxes, likely 

a finite amplitude effect. Niino's bias is built in through his assumption that the fluid is stratified in 

the salt-finger sense from the outset. However, some other basic features, such as sinking cold/fresh 

water and rising hot/salty water, a signature of salt-finger driven intrusions, are in agreement with 

experiment. The streamlines and other field variables are shown in figure7. 

When fi 7^ 0, the same asymptotic relations in extreme R limits between a and R hold as in 

the case p = 0.  The essential fi dependence -is that the wavenumber of the FGM increases with 

increasing ji when R is small, and decreases with increasing ft when R is large.   As a result, the 

growth rate for the FGM decreases as /i is increased (when R is smaller, the decrease in the growth 

rate is more drastic).  A simple argument in terms of the buoyancy dynamics illustrates why this 

is true.  Upon giving a suitable massage to equations (15) and (16), one can obtain the buoyancy 

equation 
ß d2S 

g£t (aT - ßS) = -N2w -ß{l- RF) «e^ (28) 

Since fi is directly proportional to N2, we see that for upward moving fluid equation (16) predicts 

a decrease in S when 57 > 0; therefore, S decreases with increasing fi. The diffusive term in (28) is 
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Figure 5: Growth Rate a vs. vertical wavenumber m, e = 1 (Niino, 1986) 

101 , 

10-« 10-'    1     10     10'   10«   10«  10»   10*   10'   10«   10* 
»    R 

Figure 6: Fastest growing wavenumber vs. R, various values of e (Niino, 1986). 
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proportional to m2S, so when S decreases with increasing /x and fixed N2, the time rate of change 

of buoyancy also decreases. Thus, the growth rate of disturbances decreases with increasing fi. In 

fact, Niino's results recover the results of Toole and Georgi and of Ruddick and Turner in certain R 

limits. For R < 40 (1 + /x), the limit of a narrow front, the vertical scale of the fastest growing mode 

is d. This is the same scale that Ruddick and Turner observed. In the limit R > 2 • 105 (1 + /*), the 

scaling for a wide front is given by that used by Toole and Georgi. 
Niino then goes on to compare the vertical scales of the FGM in his theory to those observed in 

the Ruddick/Turner experiments. Since Niino's theory assumes a vertical stratification in the salt- 

finger sense, his theory is not directly comparable to the experiments for which the fluid is initially 

stratified in the diffusive sense. Despite this fact, Niino boldly makes comparisons with all of the 

Ruddick/Turner experiments. It is a bit ironic that the best agreement between experiment and 

theory occurs in the case for which Niino's theory should not be valid, the diffusive case. Niino's 

theory predicts m = 3.4, which jibes well with the experimentally observed m = 3.1. In the salt-finger 

stratified case for which the theory is built, Niino's prediction is m = 7.9, whereas the experiments 

showed m = 2.7. There is a variety of possible explanations for the discrepancy. First, it is possible, 

even likely, that nonlinear effects play an important role in the evolution of the rolls to their final 

steady state. If nonlinearities are considered, it is quite reasonable that the wavelength might be 

modified by a factor of two or three. Another possible problem is that Niino assumed a constant 

eddy diffusivity *ce. This is the Stern paramaterization (Stern, 1967), which assumes that the heat 

and salt fluxes are dominated by salt-finger interfaces. It is possible that diffusive interfaces would 

effectively cause ne to vary in some regions. This latter consideration has received little theoretical 

attention, at least at the time of Niino's work. 
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. The stream function (a), temperature (6), salinity (c) and buoyancy Id) fields of the 
fastest-growing mode for e = 2.0. ^=0. G = 10« and m = 6.4, and the corresponding total 
temperature (e) and total salinity field (/), in which the amplitude of the temperature perturbation 
is taken to be 0A4/JASfx. The vertical coordinate is scaled by the wavelength 2n/m. Warm saltv 
water is in the right-hand side. C. W. F, S, N and P stand for cold. warm, fresh, saltv. 
negative and positive respectively. 

Figure 7: Flow pattern for the frontal intrusions (Niino, 1986) 
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Figure 1: Small scale structure of the temperature field (T) and the velocity field (u'). 

Microscale signatures of salt fingers in the ocean 

As well as producing staircases, we expect to be able to diagnose the presence of salt 

fingers by some other signatures. In Figure 1, we show high frequency measurements of 

temperature and velocity. The abscissa is the horizontal displacement. 

The figure illustrates three different types of behavior: (SF) shows the salt finger behavior, 

where T" fluctuates rapidly with a rather constant amplitude. (T) is characteristic of a 
turbulent region, where T" now varies with a more variable amplitude. (N) just shows the 
natural background noise level. 

We may also plot the amplitude of the temperature fluctuations as a function of the 
wavelength (see Figure 2). We then see that the observed largest temperature fluctu- 

ations have a wavelength which corresponds to the fingers developing under the fastest 

growing mode (calculated using the Stern(1960) model). Furthermore, it is even possible 

to reproduce the whole spectrum using a more refined model (Schmitt 1979). 

Another illustration of the small scale structure is seen in detailed isotemperature curves 

(Figure 3) from a thermohaline staircase. These isotemperature curves are grouped to- 
gether in the interfaces where the salt fingers are present, showing that the gradients there 
are the largest. 

Furthermore, as may be seen from the bottom of the Figure, the variance in small scale 

temperature fluctuations increases whenever the microstructure probe enters an interface. 

When the spectra of small scale horizontal temperature gradients is calculated, it is found 

to have a slope of +2 at wavenumbers less than the fastest growing finger. This is in 
contrast to turbulence, which has a slope of 1. 
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Figure 2: Amplitude of temperature fluctuations as a function of wavelength for salt fingers 

and turbulence. Superimposed on the salt finger curve is the spectrum obtained with the 

Schmitt (1979) model. 
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Figure 3: Staircase structure seen in iso-temperature curves. 
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Figure 4: Microstructure gradient sectrum for salt fingers. 

Another quantity which is useful for discriminating turbulence from salt fingers is the 
Kurtosis, which is defined as the normalized 4th moment of the variance: 

Kurtosis 
(V4) 
/J72\2 (1) 

This quantity is low for salt fingers, since the small scale fluctuations are more even 

(Holloway and Gargett, 1987). The kurtosis is higher for turbulence. This is illustrated 
in Figure 5. 

Mack and Schoeberlein (1993) use both Kurtosis and spectral slope to distinguish fingers 
(high slope, low Kurtosis) from turbulence (low slope, high Kurtosis). 

We can illustrate the success of the model by overlaying a map of the small scale structure 
along with a map of the density ratios (see Figure 6). 

On Figure 7, we see an histogram relating the number of observations of microscale tur- 

bulence as a function of density ratio. For Rp between 1 and 3, we have a maximum, 
corresponding to the salt finger region. 
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CASE 1 SALT FINGER 
(304) 8:0:0 - (304) 8:3:30 

CASE 2 SALT FINGER 
(303) 19:0:0 - (303) 19:5:0 

CASE 3 TURBULENCE 
(306) 8:51:30 ■ 1306) 3:0:0 

■yV»-.^"-.\ 

12 15 0 

CASE1 
(304) 8:0:0 - (304) 8:12:0 

(a) 

CASE 2 
(303) 19:0:0 - (303) 19:12:0 

3 6 9 12 15 

Kurtosis 

CASE 3 
(306) 8:50:0 ■ (306) 9:2:0 

(b) 

Figure 5: Measures of the Kurtosis for salt finger regions compared to a turbulent region. 

1    The Shen-Schmitt model 

In this new model (Shen and Schmitt 1995), we will use the height (h) of the interface to 
determine the finger strength. However, we do not specify how the h is fixed. 

Consider the displacement (rj) of particles in a fingering interface of thickness h 

r){t) = {z-z0)<f>(x,y) (2) 

The finger velocity field is given by 

w' = w0e
Xt<f>(x,y) (3) 

which also defines the particle speed 

w 

Integrating over time, we see that w is proportional to the particle displacement 

»7(0 
w0e' 

or 
w ' = X(z - z0) 

(4) 

(5) 

(6) 
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Figure 6: Small scale turbulence amplitude and density ratios as a function of depth and 
longitude from Mack and Schoeberlein (1993). 
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Since maximum displacement is given by h, the maximum velocity is simply w = Xh. This 

can be used in the heat equation to define the amplitude of the temperature perturbations 
within the fingers. 

We now use the heat equation 

dT        — 
-^ + w'Tz = KTV2T' (7) 

with a solution of the form T' = TeXt<f>(x, y) and we get 

f(X + KTm2) = -wTz (8) 

where m2 represents the total of the squares of the horizontal wavenumbers. Substituting 
the value of w _ 

rh xhT* X AT 
(A + KTrn2) ~     (A + KTm2)   2 l ; 

For a given salt finger dispersion relation X(m) we can then construct a salt finger 
wavenumber spectrum 

*,    ^2      (        Km)        V(AT)2 ,    N 
\X(m) + KTTU

2
 I       4 v    ' 

Introducing the scaling 

'gocTz 
m 

1/KT 
M    and    A = (gaTz) * G (11) 

where M is now the non-dimensional wavenumber and G the non-dimensional growth rate, 
and the definitions _ 

<xT' aTz v KT ,    S 
7 = 7?^; ^=dFi a = — ■ r = — (12) 

PO pbz KT KS 

for the heat to salt flux ratio (7), the density ratio (Rp), the Prandtl number (a) and the 
ratio of diffusivities (r). 

The dispersion relation is then 

G{M) =        V      T) (13) 
0-2 (Rp - 7) 

A good approximation (Schmitt 1994) is obtained by using 
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7(M) = M& - (b2 - 4RP)*] with   b = R„ (l + M4) + 1. 

This yields a spectrum 

,»,i4^)^ i20 

(14) 

(15) 

One can also use the dispersion relation of Stern(1975) (assuming KS < «r < v). In this 
case all wavenumbers grow and we get 

Tn{m) 
Rp{m2 + 1) 

(AT)2 

(16) 

i.e. we have a white spectrum until M ~ 1. That corresponds to a gradient spectrum 
with a slope of +2. It is found that the new model agrees well with results from numerical 
simulations, laboratory experiments and oceanic observations. 

2    Models Of Mixing 

Vertical profiling techniques allow estimates of the dissipation rates of turbulent kinetic en- 
ergy (e) and thermal variance (x) to be made. These measurements can be combined with 
information on background gradients to provide estimates of the vertical eddy diffusivity. 

In the case of ordinary turbulence, such as that caused by breaking internal waves, the 
effective vertical eddy diffusivity is given by the relations 

due to Osborn and Cox (1972) and 

K0 

KT = 

RS 

X 

(1 - R}) 

2(Tzy 

e 

IP 

(17) 

r*— 
N2 (18) 

due to Osborn (1980), where Rf is the efnency of conversion of kinetic to potential energy, 
and r* is the 'scaled dissipation ratio' or 'mixing efficiency' of turbulence. Laboratory 
data suggest that Rj is about 0.15-0.2 which gives an expected T' of about 0.18-0.25. 
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For salt fingers, the relation between diffusivity and e/N2 is much different. McDougall 

(1988), Schmitt(1988), and Hamilton et al (1989,1993) point out that the appropriate 

relation for salt fingers is 

*• = T'W2 (19) 

where T^ = ^ ,?~ I, r is the flux ratio and Rp is the density ratio. 

This expression can give a diffusivity over ten times the Osborn formula for the same 

dissipation rate due to the high efficiency of salt fingers in converting haline to thermal 

potential energy. Turbulence on the other hand dissipates most of its kinetic energy, 

converting only a small fraction to potential energy. 

The above relation is very sensitive to the value of the flux ratio, leading to some uncer- 

tainty in the effective diffusivity expected in salt finger regions. This is due in part to the 

differences in theoretical models, and also because IV is a particularly difficult variable 

to estimate: There are questions about the isotropy of microstructure, both x and e have 
non-Gaussian distributions, and there is much internal variability to contend with. Recent 
measurements with the High Resolution Profiler (Schmitt et al 1989) show a variation of 
observed T in Richardson number and density ratio space which suggests that salt fingers 

dominate the mixing at high Richardson number and low density ratio. Turbulence tends 

to dominate when the Richardson number is low, regardless of Rp. 
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Limits on Growing, Finite-Length Fingers: A Gradient 
Froude Number Constraint 

Eric Kunze 

1 Introduction 

The role of salt-finger fluxes is crucial to ocean-mixing and water-mass modification. The 
C-S ALT experiment showed that those fluxes are 30 times smaller than the laboratory AS4/3 

flux law predictions. 
A new model for fastest-growing fingers is formulated to try to reconcile the predictions 

of the AS4/3 flux law with the recent dissipation measurements. We shall assume that the 
fastest-growing fingers dominate the fluxes, that the fingers grow in a background gradient 
of salinity and temperature (and not on a thin interface, like in most of the laboratory 
experiments), and that the finger tips are not important to fluxes. In our model, a finger 
gradient Froude number constraint Frf = ^ < 2 is applied to fastest-growing fingers. This 
constraint is identical to Stern's collective instability criterion. For typical ocean staircase 
interface thicknesses, the gradient Froude number constraint leads to fluxes well below the 
AS4'3 parameterization predictions. The AS4'3 flux law can be reproduced if the maximum 
finger length is identical to the interface thickness. 

The expressions developed here are cast in terms of readily-measured quantities. Numer- 
ical examples use values (summarized in Table 1) typical of thermohaline staircases east of 
Barbados for density ratio Rp (1.6), salinity step AS (0.1%), and interface thickness Z; (2m). 
This interface thickness is much larger than what would be extrapolated from laboratory 
studies, but is not atypical of the ocean. 

2 The equations of motion 

The basic features of the model are sketched in Figure 1. Figure la shows a vertical slice 
through a fingering zone. Figure lb displays temperature and salinity profiles through up- 
and down-going fingers as well as the contrast between fingers. Sinusoidal horizontal struc- 
ture is assumed (Figure lc), either in square planform sin(Jbxz) sin(ibvy) corresponding to 
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K/WWV- 
Figure 1: A schematic describing the major features of the growing finger model 
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Variable Value 

v 10-6 m2/s 
*r 1.4 x 10-7m2/s 
% 1.1 x 10-'m2/s 
S 9.8 m/s2 

a 2xlO-4oC-' 
ß 7.5 x lO-^/oo"' 
4 20 m 
t 2 m 
Ir 0.3 °C/m 
S- 0.05 %o/m 
^ 1.5 x 10-2/s 
P v = 2T/N 7 min 
Rp 1.6 
Vfr 3.1 cm 
^z 6.3 x 10-3/s 
/ 3.5 x 10"5/s 
Pf = 2v/f 2 days 
Ri 6 

Table 1: Parameter values used for figures. Values are typical of the thermohaline staircases 
east of Barbados. 

unsheared conditions, or in vertical sheets sin(fcxx + ky-y) aligned to the internal wave shear 

Mathematical expressions for temperature and salinity reflecting the above descriptions 

au 
dz 

are: 

T = T0 + ^z + ST(x,y,t) (1) 

s = s° + -Q;z + ss(*>y,t) (2) 

where ST and SS are the contrasts between adjacent columns relative to the horizontal 
average. The equation of motions for time-varying salt fingers are: 

■— - vV2w = b = g(aST - ßSS) (3) 

dST „,„„       dT 
— - KTV

2
ST + w— = 0 (4) 

dSS        „. dS 
— -KsV*8S + w— = 0 (5) 

where v » KT » KS (which implies a « N « uk2) and V2 » ^ + j^ for tall, narrow 
fingers. Continuity implies that finger length h and vertical velocity w are related by 

ah 
w = — 

2 
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Figure 2: Growth rate a vs. horizontal wavelength A = 2ir/k for four different values of 
Rp. The triangles indicate the maximum growth rate at its corresponding wavelength. The 
dotted curves correspond to molecular decay scales uk2, «rfc2, and Ksk2. 

where a is the growth rate of the fingers. From the geometry of Figure lb the contrasts 
between adjacent fingers are given by: 

6T = 

8S = 

TzhÖT 
_2 
SzhSs 

Within the fingers the gradients are diminished because of the contrast: 

6T = TZ(1-6T) 

SS = 5,(1 - 6S) 

(6) 

(7) 

(8) 

(9) 
(10) 

3    Fastest-growing fingers 

We now focus on the fastest-growing fingers which will ultimately dominate the field. The 
growth rate is plotted versus wavelength A in Figure 2 at several density ratios. The wave 
number band of large growth rate is very narrow, so considering only fastest-growing fingers 
is justified. Maximum growth occurs for 

K
MAX ~ ^■■W-i)-^ 

VK-r VKj- 
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Figure 3: Maximum growth rate a MAX, unperturbed buoyancy frequency N0 and finger 
buoyancy frequency Nf vs. density ratio for parameter values typical of the staircase east of 
Barbados. 

where N0 is the unperturbed buoyancy frequency and Rp =  ^2^ 
ßsz 

As RD increases the 
wavelength decreases because more diffusion is needed to produce the buoyancy required to 
drive fingering at higher NQ. 

The maximum growth rate is plotted in Figure 3 and is given by 

°MAX~\f
T-\Ks)9ßS> {yfc-y/R,-!) 

which decreases with increasing Rp because the stronger temperature gradients at high Rp 

retard acceleration. Also plotted in Figure 3 are the buoyancy frequencies of the background, 
N0, and inside the fingers, Nf. The growth rate a is smaller than either the buoyancy 
frequency by a factor of 2 - 3 at Rp = 1.1, a factor of « 12 at R„ = 2. 

The relative temperature and salinity contrast for the fastest growing fingers are functions 
only of Rp (Figure 4). The temperature contrast ST decreases with density ratio because 
the smaller wavelengths at higher Rp allow more molecular diffusion. Because its molecular 
diffusivity is so much lower, salinity is virtually unaffected; it remains approximately constant 
at 

The ratio of heat flux to the salt flux is given by 

In Figure 4 the flux ratio's dependence on density ratio is compared to various laboratory 
estimates.   Over the range Rp = 1 to 6 shown, the model agrees with the laboratory ex- 
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Figure 4: A comparison of the flux ratio's dependence on density ratio Rp for the fastest- 
growing model with various laboratory estimates. 

periments of Turner (1967) and Schmitt (1979a), but not those of McDougall and Taylor 
(1984). 

4    The finger gradient Froude number 

The finger height is unbounded in a purely linear theory, so we need a supplementary con- 
straint to limit their growth. Larger vertical velocities occur in longer fingers. Therefore, 
the shear between adjacent fingers will disrupt those fingers which have grown beyond a 
certain critical height. Comparing the vertical shear |Vtü| with the bouyancy frequency N, 
we introduce the finger gradient Froude number 

Frf = 
|Vto| 
N 

We shall assume that the fingers cannot grow above a critical finger Froude number Frf = 2. 
For critical Frf the maximum finger length is (Figure 5) 

2V2CZ1/2FrfV
3'A 

•"*- IZßs^ ^+^?» 
The coefficient Cw depends on the horizontal structure of w (1/2 for single sinusoid and 1/4 

for a double sinusoid). For typical density ratios (< 2) this is approximately 30 cm. 
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max 

Figure 5: Maximum finger length KUAX plotted against density ratio for fingers growing 
within an interface with salinity step AS = 0.1%, Frf = 2. The solid curve corresponds to 
an interface 2m thick (U = 2m) so that the backround salinity gradient Sz is 0.05%/m. For 
the dashed curve, the fingers are assumed to fill the interface, that is, /,- = hj^AX- 

5     Fluxes 

The average fluxes are given by 

9ß (FT) = J^^^ßSr {y/R, + y/R~^T) 

where the time-average integral 

I     = 2crtMAX = 2ln(khMAx) = In 

3n 

C/WKT 

and CT = Ca = 1 for a square wave, 1/2 for a sinusoid, and 1/4 for a double sinusoid. The 
average fluxes and the total buoyancy flux < Fb >= g(ß < Fs > —a < FT >)are plotted in 
Figure 6a. If hMAX = U, 

ga < FT >= 
ICT fFr2\1/3 

^f) ü%ß*S)*y/R,{y[R, + y[R^ 
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Figure 6: Average buoyancy fluxes vs. density ratio for fingers growing in an interface with 
AS = 0.1%, Frf = 2. The upper panel (a) corresponds to a 2m thick interface (// = 2m) 
in which, according to Figure 5, individual fingers do not fill the interface.In the midpanel 
(b) the thickness of the interface is identical to the maximum finger length (li = HMAX)- In 
(c), the case shown in (b) has been scaled by K^3{gßAS)Alz and is compared to laboratory 
estimates of the salt buoyancy-flux. 
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gß<Fs>=I-f 

reproducing the laboratory AS4/3 laws. 

6    Conclusions 

(§)1/34/3(^A5r/3 

A model for fastest-growing fingers in an interface has been described with a finger gradient 
Froude number constraint limiting the magnitude of the fingers. The dependence of the flux 
ratio is identical to the nonequilibrium models of Stern(1975) and Schmitt (1979b) and the 
laboratory measurements of Turner (1967) and Schmitt (1979a). If a finger fills the interface, 
the laboratory behavior, in particular, the AS4/3 flux law, can be reproduced. However, for 
the staircase region east of Barbados, the majority of interfaces are much thicker (2-5 m) 
than the maximum finger lengths allowed by this model (30 cm). Under these conditions, 
the model fluxes depend on the interface gradients and are « 3 • lQ-10W/kg or less, more 
than thirty times weaker than the w 80 • 10-loW/kg predicted by the AS4'3 flux law. This is 
in qualitative agreement with the microstructure measurements collected east of Barbados 
during the C-SALT cruise of November 1985. 
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Effect of vertical shear on salt 
fingers 

Motivation 

The shadowgraph profiles of the thermohaline staircase near Barbados show a 3 m depth fingering 
favorable zone with a vertical wavelength of 1cm where one would expect a horizontal structure. 
Figure 1 shows these observed structures. The visualization technique shows the Laplacian of the 
index of refraction. The variation seen here is almost entirely due to variation in salinity. 

Temperature CO 

34.5   35.0    35.5    36.0   36.5   37.0    37.5   38.0    38.5    39.0 

Salinity (%o) 

Fie. 1. Vertical profiles of temperature from the shadowgraph profiler offset by 3°C (STV T), 
CTD temperature (T) and CTD salinity (S). Between 40 and 130 m, the water column is stable to 
double diffusion (temperature decreasing and salinity increasing with depth). Below 130 m. the 
thermohaline structure is largely favorable to salt fingering (temperature and salinity both 
decreasing with depth). A well-ordered staircase occupies 300-600 m. The dots indicate the 

depths of the images 
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A model of this phenomena should also explain the following observations 

• a dominant vertical wavelength in temperature field of ~6cm 

• a dominant horizontal wavelength in the temperature field of 5-7cm which is consistent with 
the fastest-growing wavelengthlatex 

• an average turbulent dissipation rate of ~ 10~loW/kg. A factor of 30 below those deduced 
by an extrapolation of laboratory experimental data 

• an average interface dissipation rate of ~ 5 • 10~10W/kg 

• a median interface Cox number (Cx = *^=p-) linearly dependent on the interface thickness 

k. 

It seems reasonable that these observations may result from the presence of vertical shear. 

Equations of motion 

Our previous model should be changed to include a vertical shear as shown figure 2. 

The equations of motion become : 

dtu + Udxu - i/V2tt + Vzw = dxp 

dtw + Ud* - vV2w - -dx + g(a6T - ßSS) 

dt6T + Udx6T - KTV
2
6T + Tzw = 0 

dt6S + Udx6S - KSV
7
6S + S^w = 0 

9itt + 9*ui = 0 

where the presence of the uniform shear (Uz) adds the underlined terms to the unsheared equations. 
Note that Z7, UX,TZ, St are not necessarily constant. 

We look for the numerical solution proportional to exp[i(Jbxz + kyy + kzz)] giving rise to the 
substitution : 

dx —► ikx 

dz —► ikz 

V2 —» -*2 

where i2 = k\ + Jfe2 + A2. 
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Figure 2. A schematic defining the parameters of the sheared finger model. In the upper panel 
(a), a vertical cross-section through a zone of tilted fingers is shown. The thick solid lines 
demark the strong gradients between adjacent fingers and at their intruding tips. The central 
panel (b) displays temperature and salinity profiles along the dashed lines in (a) for up- and 
downgoing fingers (left and center) and the contrasts between fingers (right). Temperature 
and salinity are continuous at the inlet to a finger, vary smoothly over its length and are 
discontinuous at the intruding tip. Upgoing fingers are lighter than the surrounding fluid, 
downgoing fingers heavier. Gradients inside the fingers (solid lines) are weaker than in the 
unperturbed fluid (dashed lines). The finger height h lengthens in time. Sinusoidal structure 
for finger temperature, salinity and vertical velocity is assumed (c). 

Numerical results 

We use parameters values for this simulation which are typical for the thermohaline stairecase east 
of Barbados where the observations were made. Two horizontal configurations will be considered. 
In the first we look for a square planform where kx = ky, with a steady shear parallel to the x-axis. 
In the second case we consider a sheet form where the initially aligned shear rotates with time. 
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Steady shear 

The numerical results for a square planform of salt fingers in steady shear are plotted figure 3. 
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F.gure3 The t.me evolution of normalized (by their initial values) finger height h/h (upper 
pane ) and vertical velocity W/K (lower panel) for square planform fingers with horizontal 
wavelengths rangmg from 2-7 cm in a shear of« = 6. The vertical verity decays w thou 
growmg. As a consequence, the finger height does not increase significantly 

We can see that the finger size does not grow with time and the vertical velocity decreases 
swiftly to zero. Therefore fingers form sheets aligned with the shear. They are titled over and 
then become molecularly damped too rapidly to contribute significant fluxes. Equations of motion 
become essentially the same as the case in which there is no shear if dx = 0. 
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Rotating shear 

Results for fingers size and their vertical velocity are plotted figure 4. 

Figure 4, The time-evolution of salt sheets with wavelengths ranging from 2-7 cm in 
inertially-rotating shear of Ri = 6. The normalized finger height h/h0 is shown in the upper 
panel and vertical velocity w/w0 in the lower panel. The sheets are initially aligned with the 
shear (Fig. 6a). They tilt over and are damped more slowly than square planform fingers (Fig. 
5) which feel the full effect of shear. The vertical velocities grow for ~7 buoyancy periods, 
attaining magnitudes up to 35 times their initial value before decaying. The finger heights 
reach up to 100 times their initial value for horizontal wavelengths similar to the unsheared 
fastest-growing wavelength of 3 cm. 

It seems possible that sheets could grow significantly before being tilted and damped, yet be 
significantly tilted before becoming unstable. 
If we plot the normalized vertical gradients of temperature (■£$%) and salinity (^^) against the 
vertical wavelength we find a maximum of these quantities at A, ~ 1cm for the salinity and ~ 3cm 
for temperature. The wave length of the salinity field agrees well with oceanographic observations, 
supporting the hypothesis that the observed layers are due to salt. The vertical wave length for 
the temperature field is smaller than the observed value. This may be as a result of instability in 
the sheets, which will be discussed below. 

Comparision for fluxes 

unconstrained fluxes 

A model must give a microstucture in agreement with observations, but to be relevent must also 
give flux estimates which are consistent with measurements. However, if we consider the case 
where sheetgrowth is unrestricted except by the tilting, numerical results give values of: 
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• the average flux ratio Rp — a{Fr)/ß{Fs) 

• the dissipation rate (e) 

• the buoyancy-flux (Fh) 

• and the Cox number (Cx) 

which are inconsistent with observations. For example the dissipation rate and the buoyancy-flux 
are 2 orders of magnitude larger in the simulations than in those measured in the thermohaline 
staircase near Barbados. 

Constrained fluxes 

As in the previous chapter we impose a constraint on the Stern number. Considering the vertical 
shear we can assume that 

Rxf   -      N2      __(! + ,)   =A<2. 

This assumption allow us to obtain results in better agreement with observations as shown figure 
5. 

Conclusion 

We have considered a model describing the interaction of salt fingers and the oceanic shear. This 
provides an extension to previous models by allowing the tilting of salt fingers by both staedy and 
unsteady shear. The results for steady shear are consistent with the experiments of Linden which 
show that fingers preferentially occur as sheets aligned with the shear. 

However, shear in the ocean is not steady, but rotates to produce a component of the shear 
across the initially aligned sheets. The process of rotation occurs slowly enough that the sheets 
have time to grow before being significantly tilted. If the sheets are allowed to freely evolve in the 
shear the values of the fluxes predicted is significantly higher than those observed. However, if we 
assume that the growth is halted when the Stern number exceeds a critical value the the fluxes 
become consistent with observations. The results strongly suggest that salt fingering is responsible 
for the observed layering. 
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The Criteria for the Onset of 
Double-Diffusive Instabilities 

at a Vertical Boundary 
Oliver S. Kerr 

City University, Northampton Square, 
London  EC1V0HB, U.K. 

Over the years there have been a number of reports in the literature of 
experimental investigations into the onset of instabilities when a salt stratified 
body of water is heated at a single vertical wall. These include Thorpe, Hutt & 
Soulsby (1969), Chen, Briggs & Wirtz (1971), Narusawa k Suzukawa (1981), 
Tanny & Tsinober (1988) and Schladow, Thomas & Koseff (1992). The first 
of these concentrated on the onset of convection in a vertical slot, while the 
last focussed on the effects of having a vertical temperature stratification in 
addition to the salt stratification. We will focus on the other three papers. 
For a more general review of this whole field see Kerr (1995) 

These experimental works have come up with various criteria for the initial 
onset of instabilities. In particular Chen, Briggs & Wirtz (1971) proposed 

the criterion 

ßa = ^^1 = 15 000 ±2 500. 
UKT 

This is a Rayleigh number based on the Chen scale, H = a>AT/(-ßSz) where 
AT is the wall temperature, S2, the vertical salinity gradient, g the acceler- 
ation due to gravity, u the kinematic viscosity, KT the thermal diffusivity, a 
the coefficient of thermal expansion and ß the coefficient of density increase 
with respect to the addition of salt. The Chen scale is a natural vertical scale 
that arises in side wall heating, representing the distance an element of fluid 
would rise if its temperature were increased by AT. Narusawa & Suzukawa 
(1981) proposed the criterion 

773 = =03, = °-28' 
where q is the heat flux at the wall and k is the thermal conductivity. This is 
essentially the nondimensional ratio of the horizontal temperature gradient at 
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the wall to the vertical salinity gradient. Tanny & Tsinober (1988) proposed 

qaATf3 

Rat = 2 i. = 53.8 ± 12, 
VKS 

where £ = (uKs/(—gßSz)j . This is a Rayleigh number based on the thin 
salt boundary layer scale, £. None of these are the same, nor do they agree 
with the theoretical result of Kerr (1989) where the criterion of 

„     (1 - r)6g(aAT)Hs     ,tt7t7nn Q = i L»l_—I— = 147 700 

was derived. This is like a Rayleigh number but involves two different length 
scales, the vertical scale H and the horizontal scale L = y/nri where t is the 
time since the onset of wall heating. A physical interpretation of this nondi- 
mensional number can be found in Kerr (1995). Here we will examine these 
various stability criteria. We will show that they are all compatible with the 
observations, but are based on different interpretations of the experimental 
results. 

One important feature of the problem of heating a salinity gradient from 
a single side wall is that the background state is always changing. The length 
horizontal scale, L = s/Kri, is steadily increasing. In addition the wall tem- 
perature, AT, is also usually increasing. This could either be because the 
heat is applied as constant flux, implying AT oc y/i, or because the wall 
takes a finite time to reach its final temperature (about 3 minutes for Chen 
et al.). In real experiments the nondimensional numbers Ra, Ra$ and Q if 
evaluated at the instantaneous value of the wall temperature are all functions 
of time. In the experiments of Tanny & Tsinober the evolution of the wall 
temperature was recorded along with time when instabilities first appeared. 
From this information they were able to calculate the evolution of the values 
of the salt and thermal Rayleigh numbers based on the horizontal length L 
defined by 

gaATL* -gßSzL* 
Jriax = , Has = 

as well as the the points in the Ra^-Ras plane corresponding to the onset 
of instabilities. These are shown in Figure 1. Tanny & Tsinober found a 
line of best fit through their data points for larger values of Ras, finding that 
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Figure 1: Points indicating the values of Rax and Ras at the onset of in- 
stability form the heat-salt experiments of Tanny & Tsinober (1988) along 
with lines indicating (a) the stability criteria of Chen, Wirtz k Briggs (1971) 
(lower line) and Tanny & Tsinober (upper line), and (b) the stability criterion 
of Narusawa & Suzukawa (1981) (long line) along with the initial trajectories 
of their experiments using common salt (short lines). 

the slope was almost exactly 3/4 (upper line in Figure 1(a)). This slope is 
the same as that for the criterion of Chen et al. (lower line in Figure 1(a)) 
when expressed as a relationship between Ras and Rar- However, if Tanny 
& Tsinober's condition was converted into the Rayleigh number of Chen et 
al the constant would be 83700 and not 15000 ± 2500. Neither of these 
results are incompatible with the experimental results shown in the figure. 
They represent two ways that could be used to interpret the experimental 
information. Tanny &; Tsinober gave the formula for the line of best fit 
through the data points, while the line of Chen et al. is a good choice for a 
line of slope 3/4 that represents a lower bound for the region of instability. If 
one assumes that all points should lie inside some region of instability then 
this could be the more appropriate approach. Instabilities are only visible 
when they have grown to a finite amplitude and so the values of the Rayleigh 
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numbers recorded when instabilities are first observed may not be those that 
were applicable when heated salinity gradient first became unstable. The 
second approach may be a more meaningful way of looking at the problem 
when considering marginal stability, while the line of Tanny & Tsinober gives 
a good description of what will be observed. 

The experimental results of Narusawa & Suzukawa (1981) are harder to 
fit into this picture as they did not report information about the time at which 
instabilities were first observed. Hence it is not possible to calculate the cor- 
responding instantaneous salt and thermal Rayleigh numbers. However, it is 
possible to calculate the lines of slope 1 in the Raj-Ras plane along which 
their experiments using common salt would evolve. Their marginal stabil- 
ity criterion corresponds to the long line shown in Figure 1(b) and separ- 
ates those trajectories corresponding to experiments where instabilities arose 
(short solid lines) and those where they did not (short dashed lines). It would 
appear that all the trajectories would cross the stability boundaries found by 
the others and so should become unstable. However, they terminated their 
experiments after a finite time determined by the rise in temperature at the 
centre of their tank. This put an upper bound on the Rayleigh numbers 
that could be observed which corresponds approximately to the upper end of 
the marginal stability line shown. Since this point lies close to the region of 
marginal stability found by the others, their results are compatible with the 
other criteria if the time constraint is applied. If there were no time limit on 
the experiments caused by the finite extent of the tank then it is likely that 
instabilities would appear for all values of 7r3. 

In Figure 2 the experimental results of Tanny & Tsinober are repeated. 
Superimposed on these are (a) the linear stability criterion for the onset of 
steady convection in an infinite vertical slot of width L, and (b) the linear 
stability result of Kerr (1989) for an evolving wall temperature of the same 
form as the experiments of both Chen, Briggs & Wirtz and of Tanny & 
Tsinober. The former example shows many of the features of the observed 
experimental results and would seem to give a reasonable boundary for the 
observations. In particular it gives a lower limit for possible values of Rax and 
an almost vertical boundary for smaller Ras- But the match is not perfect, 
for example the smallest value of RUT for which instabilities were observed 
differs by a factor of 10 from the prediction of the analysis of the slot. In 
addition, the vertical wavenumber for marginal stability in a slot is 0 near the 
bottom of this curve.  This is not observed in single side wall experiments. 
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Figure 2: Comparison of the experimental results of Tanny & Tsinober with 
(a) the linear stability of a slot of width L, and (b) the linear stability criterion 

of Kerr (1989). 

The structure of the corresponding instabilities in a slot relies on the presence 
of two walls, and would not be appropriate for the single wall case. 

The criterion from the linear stability analysis of Kerr (1989) is based on 
the assumption that (H/L)2 < 1. This approximation is appropriate for the 
experiments of Chen et al. and many of those of Tsinober & Tanny, but only 
a few of those of Narusawa k Suzukawa. It provides a good lower bound for 
the data points, especially for larger values of Ras where the above condition 
is most appropriate. The nonlinear energy stability analysis of Kerr (1990) 
shows that if the vertical periodicity of the intrusions is limited by the Chen 
scale then arbitrary disturbances will always decay if Q < 19 585(1 — r) . 
This gives a line of slope 5/6 parallel to and just below the line shown. The 
stability criteria of both Chen et al. and Tanny & Tsinober both intersect and 
pass below this line of absolute stability, and so cannot hold for arbitrarily 

large values of Ras- 
All the experimentally derived stability criteria listed earlier give good 

descriptions of the experiments in which they were derived, and when consid- 
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eration is given to the conditions of the experiments the results would appear 
to be compatible with each other. Similarly the experimental results can be 
interpreted as supporting the theoretical prediction in its region of validity. 
How can all this be true given the disparate nature of the stability criteria? 
There are several areas where these differences arise, one is the difficulty of 
conducting these experiments and making precise measurements. This can 
lead to a significant scatter of the data points. Tanny & Tsinober reported 
that this scatter was more pronounced for their experiments with lower Ras- 
This could account for the reduced slope of their line of best fit through their 
data points when compared with the theoretical slope if the true stability 
boundary provides a lower bound for the observations. Thus, by using a line 
of best fit, they will get a different form for their answer from that predicted 
by theory. Another problem is the finite extent of the experimental tanks 
used. If you have to terminate your experiment after a finite time does this 
mean that instabilities would not have formed for the same salinity gradi- 
ents and wall heating if the tank had been larger? Clearly this is something 
that cannot be guaranteed without further experimentation or some theor- 
etical justification. In the situation examined by Narusawa & Suzukawa it 
is probable that instabilities would always appear eventually. One difficulty 
that arises in the problem of side wall heating is the variety of different length 
scales that are present and that can be used in the derivation of nondimen- 
sional parameters. We have seen three here, L, H and £. But there are others 
that can appear in this problem which may be important such as the amp- 
litude of the excursions experienced by the internal waves generated by the 
wall heating (suggested by Schladow, Thomas & Koseff, 1992). In different 
combinations these can lead to a variety of nondimensional parameters that 
may be hard to differentiate by experimentation alone. 

Examination of the experimental results of Tanny & Tsinober, and com- 
parison with the stability of a vertical slot, indicates that there is no single 
stability criterion for the onset of instabilities in the heating of a salinity 
gradient from a single side wall. In different parts of the stability bound- 
ary different combinations of length scales will be important. This is clearly 
the case in the linear stability analysis of a vertical slot. The stability para- 
meter Q seems to be the appropriate one for larger values of Ras, but for 
lower values it is clearly not. It is not known what other combinations of 
length scales are important for different regimes of the onset of instability in 
a salinity gradient heated from a single side wall.   However it is clear that 
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attempts to find these purely by the interpretation of experiments is fraught 
with difficulty, and a solid theoretical basis will also be required. 
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Laboratory models of double-diffusive processes 

by J. Stewart Turner 
Research School of Earth Sciences 

Australian National University, Canberra ACT 0200, Australia 

Introduction 
The study of the physical processes now included under the heading of double-diffusive 

convection has expanded considerably over the past thirty five years or so. It now embraces 
applications to many different fields, though the major early contributions were made in the 
context of oceanography (and many of these in Woods Hole). I first heard about these novel 
phenomena here, and began to study them through laboratory experiments which were 
continued in Cambridge and Canberra. 

In this first seminar I presented a very personal historical review of the laboratory side 
of the subject, using many slides and movies made at the three major institutions in which I 
have worked WHOI, the University of Cambridge and the Australian National University. It is 
clear in retrospect that as the subject has evolved, too little attention has been paid to two- 
dimensional processes, compared to one-dimensional transports through interfaces, and in this 
and my second seminar I attempted to redress the balance. I have also discussed the 
application and transfer of ideas to another field of interest to me personally, the geology of 
igneous rocks. 

Two major themes are emphasized here: 
1) The importance of simple laboratory experiments in understanding the basic physics of 
double-diffusive processes. 
2) The influence of interactions between people with different skills - observers, laboratory 
experimenters and theoreticians. 

Fundamentals of the subject 
The basic requirements for double-diffusive or multicomponent convection to occur - 

the presence of two or more physical properties in a fluid, with different molecular 
diffusivities, and distributed in such a way that they have opposing effects on the density - will 
be taken for granted following the introductory lectures, and they have been covered in many 
reviews [1], [2]. A whole range of unexpected phenomena can arise, and our physical intuition 
based on ordinary thermal convection is of little help. For example dyed salt solution flowing 
slowly into a homogeneous solution of the same solute (say NaCl) forms a laminar plume 
which gently rises or falls without mixing. A plume of sugar solution of the same density, 
released at the same rate into salt solution (the latter having about three times the molecular 
diffusivity) leads on the other hand to vigorous upward and downward convection, and light 
and dense layers flowing out along the top and bottom of the experimental tank. 

Laboratory experiments immediately produced two counter-intuitive surprises: many 
convective phenomena are observed in systems which are "hydrostatically stable" and the 
vertical density difference actually increases during an experiment; and the rates of vertical 
transport are much faster with double-diffusion than in a simple fluid containing a single 
solute. An early series of experiments at WHOI (illustrated with a movie) used a dam-break 
technique to place fluid layers with different properties on top of one another. Hot water 
flowing over cold water led to intruding noses with little mixing. Dyed hot salty water flowing 
over cold fresh water of nearly the same density, however, produced vigorous salt fingers, with 
the dye and salt dropping out rapidly as the layers advanced. The opposite case of slightly 
denser hot salty water flowing under cold fresh water produced a sharp diffusive interface with 
vigorous thermal convection on each side, but a much slower transfer of salt and dye. 
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It was also demonstrated at a relatively early stage [3] that similar phenomena can be 
produce using sugar and salt solutions. This system has since provided a convenient and 
much-used analogue for the salt-heat case, with the more rapidly diffusing salt now being the 
equivalent of heat (i.e. a layer of salt solution over denser sugar solution is analogous to a cold 
fresh layer on top of a hot salty layer of water). A movie made by Tim Shirtcliffe in 1969 
using a colour-schlieren visualization of both finger and diffusive interfaces - the results from 
which were never published in detail - was also shown. The finger interface was revealed as 
having a hydrostatically stable core through which fingers provide the transport mechanism, 
with thin unstable edges which break down and drive large scale convection in the layers on 
each side. Diffusive interfaces break down intermittently in a remarkably symmetrical manner 
(with upward and downward patterns of convection appearing like mirror images of one 
another). At a later stage, persistent solitary-wave-like motions develop on the interface, and 
these couple with the large-scale convection in the layers on each side. (Only recently have 
these motions been studied in the detail they deserve.) 

It is worth pointing out, in support of the overall theme of this seminar, that the 
laboratory experiments on transport across heat-salt interfaces in both the diffusive [4] and 
finger [5] senses (which were stimulated by theoretical predictions of these phenomena) were 
completed before there were any field data with which to compare them. Observations of 
layering consistent with these processes soon followed, but it was not until much later that 
Sandy Williams [6] directly detected salt fingers in the ocean in regions of strong gradients, 
using a sophisticated variant of the shadowgraph technique (to the great relief of several 
theoreticians and laboratory experimenters in this audience!). 

Two-dimensional effects 
The strongest layering in the ocean is observed near intrusions and fronts, and yet there 

have been relatively few laboratory experiments which explicitly consider horizontal gradients 
and two-dimensional effects. The dam-break experiments described above did start with 
horizontal flows, and the waves on a salt/sugar diffusive interface set up two-dimensional 
convection, but these effects were peripheral to the original purpose of the investigations. 

The third movie presented during the seminar showed the behaviour of line sources of 
fluid released continuously into a density gradient. When a dyed source of salt solution is 
released into a salinity gradient at its own density level, it just spreads as a thin layer, 
displacing its surroundings upwards and downwards and also ahead of the intrusion to produce 
an "upstream wake". However, when a source of sugar solution having the same density and 
flowrate as the previous salt source is injected into the same salinity gradient at its neutral 
buoyancy level strikingly different effects are observed [7]. There is strong vertical double- 
difusive convection near the source (as in the case of a homogeneous salty environment) but 
the vertical spread is now limited by the stratification. Several intrusions spread out at levels 
above and below the source; each spreading 'nose' contains an excess of sugar, so conditions 
are favourable for the formation of a diffusive interface above and fingers below each 
intrusion. There is a slight upward tilt to each layer as it extends, implying that the net density 
flux due to fingers is larger than that across diffusive interfaces, so that the layer becomes 
lighter as it expands. Intrusions driven by temperature and salinity differences, and showing 
the same features as the salt/sugar analogue system, have been observed in both the laboratory 
and the ocean. 

Note a remarkable general implication of these (and other oceanic measurements) 
which has emerged as a result of the laboratory work. Not only can differential molecular 
diffusion across interfaces affect the convective motions on the layer scale (of the order of tens 
of meters in the vertical in the ocean) but it can also, by driving intrusions across fronts, 
influence the large-scale mixing between water masses, and hence the whole ocean circulation. 
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Horizontal property gradients 
When the side-wall boundary conditions do not match the conditions in the interior of 

the fluid containing several diffusing properties, instabilities can develop rapidly without the 
need to inject fluid from a source. The simplest example is a linear salinity gradient heated 
through a vertical side wall, which produces a series of equally-spaced extending layers. 
Similar effects can be produced when one wall of a tank is composed of a solid block of a 
soluble salt, and this dissolves into a gradient of another salt with a different molecular 
diffusivity. This has geological implications, as a mechanism for layering in magma chambers. 

The equivalent process in a salt-sugar system can be investigated by setting up a stable 
density gradient composed of smooth opposing gradients of salt and sugar solutions, with a 
maximum of salt concentration at the top and a maximum of sugar at the bottom [8]. With 
vertical side walls this system was stable for the gradients chosen; the surfaces of constant 
concentration were normal to the boundaries, and so the no-flux condition for both properties 
was automatically satisfied. Whe a sloping boundary was inserted, however, the concentration 
and density surfaces were distorted by diffusion so that they could remain normal to the slope. 
This upset the hydrostatic equilibrium, and flows parallel to the slope developed, with a thin 
downflow just above the boundary, and above that a thicker upslope counterflow. As shown in 
a time-lapse movie, these flows could not remain steady; the fluid rose until it reached its level 
of neutral buoyancy and then turned outwards to form a series of layers propagating into the 
interior of the fluid. 

Experiments using discrete sources or solid boundaries do not properly model 
conditions at an oceanic front, where there are horizontal property gradients but no physical 
barriers. A short movie sequence was also shown of Barry Ruddick's more realistic 
experiments [9]. He set up horizontal sugar and salt gradients (with no net horizontal density 
gradient), using a dam break technique described in more detail in his introductory lectures. 

An example in which both the temperature and salinity are unmatched to the interior 
properties at a side wall is a block of ice melting into a tank of salt water, either homogeneous 
or stratified. This problem arose in the practical context of "harvesting" fresh water from 
icebergs, which had been proposed as a potential source of drinking water for arid regions. As 
the ice melts in the homogeneous case, a boundary layer of fresh cold water rises, but it mixes 
with a great deal of its surroundings and reaches the surface far from fresh. When the 
surroundings are stratified, a series of extending layers forms along the whole depth of the 
vertical ice wall [10] and the melt water does not reach the surface at all. Systematic 
circulations are set up which bring warm water against the block at the top of each layer and 
form scallops on the melting surface. Thus whatever the stratification of the surrounding 
seawater the collection of fresh meltwater from icebergs is likely to be much more difficult 
than was envisaged, even if it turns out to be technically feasible to tow icebergs from the 
Antarctic to coastal cities in need of water. 

Geological applications 
Many of the early laboratory experiments related to geological phenomena (other than 

sedimentation, which has a long history) dealt with double-diffusive processes, and were 
suggested by analogous observations previously studied in an oceanographic context. Turner 
and Gustafson [11] reviewed the various phenomena that can result from the efflux of hot, salty 
water from vents in the sea floor; they were motivated by suggestions that this could be the 
mechanism of formation of ancient massive sulfide ore deposits. (This was before active 
"black smokers" were observed on the present-day sea floor, and the discovery of these has led 
to an acceleration of interest in these processes, including further laboratory work). That early 
paper [11] also pointed out that double-diffusive effects can be significant not only in aqueous 
solutions, but also in liquid rocks.   Magmas and lavas have a wide range of chemical 
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constituents with different molecular diffusivities, as well as large temperature variations. It is 
natural to ask if the layers observed in igneous rocks could have formed in the liquid state, and 
then been preserved during cooling and solidification. 

This approach to the problem has led to a whole new range of experiments which have 
influenced current thinking about many igneous processes, as described in recent reviews [12], 
[13]. Clearly crystallization needs to be added to the convective processes previously 
investigated; again it has proved possible to use aqueous solutions to model dynamical 
phenomena in solidifying magmas. In particular, the density changes in the residual fluid 
resulting from crystallization can lead to "compositional convection" in both systems, and the 
effect of this have been studied in many different geometries. 

When crystallization occurs at a cooled vertical boundary in a tank of finite size 
containing, say, sodium carbonate solution, the upflowing residual fluid is cold but light 
(because crystallization causes much larger changes in the density of this solution than the 
associated temperature changes). The upwelling cold depleted fluid causes stratification of 
temperature and composition in the "diffusive" sense, and this can produce layering. When 
there is a stable compositional gradient in the tank initially, a series of convecting layers forms, 
extending away from the boundary, and the growth of crystals is in turn affected by the 
position of these layers. The dynamical processes of stratification and layer formation are 
exactly the same as those occurring at a melting iceblock - cold, light fluid is produced in each 
case. This is another good example of the influence of laboratory experiments in producing 
unforeseen cross-fertilization between two apparently very different fields of application. 

Cooling a crystallizing fluid through an inclined roof of a closed tank, with the other 
boundaries insulated, produces effects more closely related to what happens in a magma 
chamber. Compositional convection leads to an upflow along the roof which ponds at the 
highest point, producing a stable region stratified in temperature and composition; if several 
chemical components are present and crystallize at different rates "differentiation", or the 
production of vertical gradients of composition, can be modelled too. As some crystals fall 
from the roof to the floor, they grow and cause strong compositional convection and turbulent 
mixing in the lower part of the chamber, but this region remains quite distinct from the 
stratified region above. The implication for stratified magma chambers is that eruptions from 
vents tapping the upper and lower layers could produce silicic and basaltic magmas 
simultaneously or in rapid sequence from the same chamber. 

A wide range of dynamical processes can be identified when a magma chamber is 
replenished from below with magma which is compositionally denser (and usually hotter) than 
the resident magma, and many of these have been'studied using laboratory experiments. With 
a rapid turbulent inflow a "fountain" forms, which rises and mixes vigorously with its 
surroundings before falling back. If the input is hot as well as dense, a series of double- 
diffusive layers forms, each of which is convecting and well-mixed. Lower rates of input give 
rise to very different phenomena. When a hot, saturated layer of, say, potassium nitrate is 
inserted carefully under cold, less-dense sodium nitrate solution, a double-diffusive interface 
forms, through which heat is transferred faster than the solutes. The lower layer cools much 
more rapidly than it could just by conduction through the side walls, and crystallizes as it does 
so. The density of the residual fluid in contact with the crystals decreases because of the strong 
dependence of the density of the saturated solution on temperature. The lower layer evolves 
towards a state where its density approaches that of the upper layer, but the interface remains 
sharp and there is little transfer of composition between the layers. As the densities become 
equal the interface suddenly breaks down and the two layers mix intimately together, leaving a 
layer of potassium nitrate crystals on the floor. 
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Further variations on these experiments have been carried out with magma mixing in 
mind. If the upper layer is stratified rather than homogeneous, when overturning occurs the 
rise of the lower-layer fluid is confined by the gradient to the lower part of the chamber rather 
than mixing through the depth. The exsolution of gas following quenching and crystallization 
of water-rich magma in the lower layer as it overturns and mixes with colder magma above can 
be modelled using a chemical reaction to release gas. The detailed mechanism is different, but 
the dynamical processes occurring in the magma chamber and the model are closely analogous. 
Both these cases were illustrated using movies of the laboratory experiments. 

Summary and conclusions 
It should be clear from this review that the identification and physical understanding of 

double-diffusive phenomena has been strongly influenced by laboratory experiments. These 
are a very effective way to isolate and study individual physical and dynamical processes. 
Associated analytical models based on simple scaling arguments can then lead to the 
formulation of principles which can be realistically transferred to the geophysical contexts of 
interest. In the oceanographic field, the interaction of observers, laboratory experimenters and 
theoreticians in close and frequent contact with one another, particularly at Woods Hole, led to 
very efficient communication and rapid progress in the early years. There is, however, a large 
element of chance in the spread of ideas across disciplines [14]. It helps to work in a broad- 
based department or group, and to attend interdisciplinary Programs such as this one, but 
ulimately the most exciting and fruitful interactions are those which develop from personal 
contacts. I believe they must grow naturally from 'the bottom up" and cannot be imposed by 
administrators from the top down. 
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Stratification and circulation produced by 
double-diffusive sources in closed regions 

J. Stewart Turner 
Research School of Eath Sciences 

Australian National University, Canberra ACT 0200, Australia 

Introduction 
The starting point of the laboratory investigations which are the focus of my second seminar is 
the fact that both the stratification of the ocean and the thermohaline circulations within it are 
ultimately determined by the action of localized and distributed sources and sinks of heat and 
salt near the surface. The bottom water in the world's oceans is formed by the sources having 
the largest buoyancy flux, and the mean stratification adjusts to this influx, with the effects of 
upwelling being balanced by distributed downward fluxes from the surface. Sources having a 
smaller buoyancy flus (or more mixing) cannot penetrate to the bottom of this density gradient 
set up by the major sources of bottom water, but instead spread out as mid-depth intrusions. 

Little detailed work has been done to investigate the effects of multiple, spatially 
separated buoyancy sources in closed regions, even in the simplest case without diffusion. 
Oceanic sources, however, are inherently double-diffusive, because of their different 
temperatures and salinities, and the effect of this can be explored using the salt/sugar analogue 
system in various geometries. 

Previous two-dimensional experiments 
As an introduction to the new experiments, I will follow up one of the themes of my 

first seminar by surveying various previously neglected two-dimensional studies of my own, 
which were conducted with some specific, different application in mind. Many of these were 
unpublished at the time (though summaries were given in the reports of the 1974 and 1979 
GFD Summer Programs), and the one subsequent publication [1] was not pursued in detail. In 
retrospect they clearly demonstrate some of the dynamical processes which are relevant in the 
present context. The theme of [1] was the behaviour of sources of fluids with different 
properties intruding into a stratified environment with the same or a different composition. 
The experiments reported in that paper showed the strong influence of double-diffusion, as 
seen in the film shown during the first seminar. I also discussed then the layers spreading out 
from a melting iceblock [2] and across a front at which there are large property differences [3] 
(a gradient of salt solution on one side and sugar solution on the other) but no horizontal 
density difference. These two studies also demonstrate the importance of double-diffusion in 
driving quasi-horizontal flows. 

Earlier experiments carried out in Cambridge with Tony Chen [4] also exhibit strong 
two-dimensional effects. One sequence of a time-lapse movie made at that time (the effect of 
an inclined boundary) was shown during my first seminar, and further sequences with different 
boundary conditions are relevant now. A long tank filled in the finger sense (with interleaved 
gradients, sugar above salt solution) exhibited strong shearing motions distorting the fingers. 
These motions were driven by accidental horizontal anomalies caused by filling through three 
floats at slightly different rates. When a disturbance was introduced at one end during or 
shortly after the filling (for example by raising a flap at the end wall) the fingers broke down 
locally, and a well-mixed convecting layer propagated rapidly along the whole length of the 
tank - at the wave speed, not as an intrusion. If, on the other hand, the gradients were allowed 
to "run down" for a while due to the vertical transports by the fingers, even a vigorous 
disturbance could no longer cause a convective overturn. 
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Counter gradients of salt and sugar solutions set up in the diffusive sense (salt above 
sugar), with a small net stable density gradient, also become unstable to small disturbances. A 
little heating through the side walls produced incipient layering with a scale of about 1 cm, and 
then stronger convection developed, now evidently driven by the potential energy in the salt 
field. Layers bounded by diffusive interfaces grew at different rates at different horizontal 
positions, so that complicated boundaries and junctions between layers were observed. The 
layers merged in pairs, twice, so that after a day they were four times the original depth. There 
were strong persisting convective motions and finally a series of horizontal diffusive interfaces. 

Unpublished experimental work at WHOI 
Other attempts were made to introduce localized double-diffusive fluxes in simple 

geometries. A second movie shown during the lecture documented a series of experiments 
carried out in the basement of Walsh Cottage in 1974. A tank was set up containing three 
compartments separated by two horizontal plexiglas inserts, with a gap at the left between the 
upper and central layers, and a gap at the right between the central and lower layers. The top 
and bottom compartments, filled with homogeneous salt or sugar solutions, acted as reservoirs 
through which diagonal gradients of properties were imposed on the central chamber. When a 
series of layers was set up in the diffusive sense, the fluxes through the gaps produced 
convection in all the layers and systematic shearing motions, with active, tilted double- 
diffusive interfaces. When counter-gradients of sugar above salt (in the finger sense) were set 
up in the central chamber, driving from the sugar reservoir above and the salt below produced 
large steady shears, which broke the fingers down to give a deep well-mixed convecting layer 
with a persistent circulation and finger interfaces above and below, much as described in [4]. 

Another exploratory experiment carried out at WHOI in 1964 has qualitative features 
which seem very relevant now. A tank 2 m long was fitted with a foam plastic slope and shelf 
at one end, with a steep slope decreasing gradually to a shallow portion about 50 cm long. It 
was filled with salt solution, S.G. 1.050, and the shallow end was heated with floodlights to 
produce both heating and evaporation. Fresh water was put in as a plume at the other end and 
the input rate was controlled by a constant head device, to keep the depth in the tank constant at 
18 cm. The vertical density gradient increased over time, and this and the circulation became 
steady after about three days. A line of dye streaks put down the centre of the tank revealed 
two distinct regions of circulation and types of layering. In the top 6 cm there were strong salt 
lingers driven by a thin hot saline layer spreading away from the shelf right at the surface, with 
strongly sheared counterflows immediately below. In the bottom 12 cm there were much 
slower intrusions spreading into the interior from the slope, with a series of diffusive layers and 
interfaces evidently driven by much saltier, warm water flowing down the steeper slope. 

The "filling box" effect 
So far I have concentrated on the first element of the new experiments, the production 

of horizontal circulations and intrusions in a stratified fluid using various horizontally non- 
uniform methods of forcing. The second element is the production of the stable stratification in 
the first place. The release of a continuous dense plume from a small source into a 
homogeneous fluid produces a stable density profile whose asymptotic form has been 
calculated [5]. This "filling box" effect implies that the densest water in a closed region results 
from the source or sources with the largest buoyancy flux (e.g. in the ocean, the sources of 
Antarctic bottom water in the Weddell Sea). Lesser buoyancy sources from marginal seas 
(such as the Mediterranean outflow) entrain lighter water from the density gradient set up by 
the major sources; they become neutrally buoyant before they reach the bottom and spread out 
as intrusions at mid-depth. There are also indications from measurements of the oxygen 
isotope concentrations in shells from benthic fauna that the water at the bottom of the ocean 
70M years ago was warm (and salty), rather than cold as it is at present. This implies that the 
largest buoyancy fluxes at that time arose from heating and evaporation in marginal seas, and 
that outflow from these dominated the formation of bottom water at that time. 
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Simple buoyancy sources in a long tank 
The most recent experiments to be described in the rest of this seminar were nearly all 

carried out in the same tank, 75 cm long and 7.5 cm wide, filled to a depth of 15 cm. Sources 
of fluid with different densities and/or compositions were supplied near the two ends, and 
flowed in at different depths in the various experiments, at constant rates controlled by a 
peristaltic pump. The tank level was kept steady using a constant head overflow pipe at the 
centreline of the tank, but with its inlet placed at different depths in different experiments. 

The first "control" experiment to be described started with homogeneous salt solution 
of S.G. 1.11 in the tank, and two sources of salt solution S.G. 1.10 and S.G. 1.12 flowing in 
near the surface, each at a rate of 5.3 ml/min. Hence there could be no double-diffusive effects 
in this experiment. The overflow was also placed just below the surface. As the stratification 
evolved towards a steady state, the fluid at the bottom of the tank became steadily denser. The 
fluid at the top (and in the overflow) at first became lighter, reflecting the density of the lighter 
input, and then at a time comparable with the "replacement" timescale (the time at which the 
volume of the combined inputs equals the volume of fluid in the tank) it began to get denser 
again. At long time the overflow density tended to the mean density of the inputs. We also 
note that the density range in the tank never went outside that of the two inputs: in a non 
double-diffusive system, with ordinary turbulent mixing, there is no mechanism for it to do so. 

Double-diffusive sources 
When one salt source and one sugar source, of nearly the same density, are injected into 

a tank containing a 50:50 mixture of the two fluids, the behaviour is very different. The first 
experiment of this kind, with both sources and also the overflow tube placed at mid depth, was 
done at WHOI during the summer of 1972. The sugar source was slightly light and the salt 
dense, but near both of them vigorous upward and downward double-diffusive plumes 
developed. Over a week the vertical density profile gradually evolved to a steady state, with 
the overall density difference steadily increasing to become very much greater than the original 
difference between the source densities, as a consequence of the double-diffusive convection. 
A sharp interface developed at mid-depth, because of the presence of the withdrawal at the 
centre of the tank at that depth, and the upper and lower layers were weakly stratified. It did 
not prove possible to measure the separate sugar and salt concentrations in detail (as was done 
in recent experiments) but the overall pattern was apparent from shadowgraph pictures. The 
distributions were antisymmetric: in the half of the tank nearest the salt input, fingers appeared 
above the interface with a series of layers separated by diffusive interfaces below (consistent 
with a maximum of salt near the central interface). At the other end of the tank near the sugar 
source, diffusive interfaces formed at the top, and fingers below the interface. A more detailed 
quantitative analysis of a related recent experiment wül be described later. 

Another example presented (this time of an experiment in the new 75 cm tank) had an 
input of salt solution, S.G. 1.104, feeding in at the bottom at one end, and sugar, S.G. 1.100, at 
the top, each at a rate near 5.0 ml/min. There was a 50:50 mixture in the tank at the start and 
withdrawal was at the surface. The density of the bottom fluid increased steadily, and rapidly 
became greater than that of the input salt solution, due to double diffusion. The fluid at the top 
at first became lighter for the same reason, and this density decrease continued for 30 hours 
(about twice the "replacement timescale"). Then as withdrawal of fluid became more 
significant the overflow density increased again, to approach the mean density of the inputs. 

Photos of dye streaks put in at various times revealed vigorous intrusive motions in 
both directions, with the level of the outflows from the two sources changing systematically 
with time as the density structure evolved. After "two hours the sugar outflow was still at the 
top and the salt at the bottom; at six hours both inputs were effectively at the bottom, with the 
sugar outflow starting horizontal and then being taken to the bottom by a double-diffusive 
plume. At 10 hours both plumes spread out at 5 cm above the bottom, and at 21 hours they 
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were 5 cm from the top - this happened because at these times the density difference between 
the sources was small compared with the vertical density difference set up by double diffusion. 
Finally, after about 45 hours, both sources were feeding in near the top of the tank, where the 
overflow had the mean of their densities, and all the fluid in the tank had a larger density. 

Quantitative double-diffusive experiments using various techniques 
I will now describe the results of a series of experiments in the 75 cm tank, all carried 

out with nominally the same sugar and salt input properties and flowrates. However we 
observed and monitored different features in each run of die experiment: the time history of the 
plumes and intrusions using photographs and a time-lapse video; the sugar concentration at 
several points as a function of time using a polarimeter, and the vertical structure of the density 
and salt and sugar concentrations, deduced by withdrawing and analysing many samples. The 
tank contained homogeneous salt solution, S.G. 1.110, initially. Both inputs and the overflow 
were at the top, with each input flowrate 5.0 ml/min. The salt source was dense, S.G. 1.120, 
and was ejected through a small nozzle to make it turbulent, and the sugar source, S.G. 1.100, 
was laminar, but rapidly became double-diffusive and caused strong vertical convection. 

During the very early stages the turbulent plume was not double-diffusive, but it spread 
out along the bottom and began to "fill the box". A sugar intrusion, produced by double- 
diffusive convection below the sugar source, spread out above the salt outflow, and fingers 
were observed between them. This is an even better analogy to the production of ocean bottom 
water by a large buoyancy flux in the Antarctic, and the subsequent intrusion of the warm salty 
Mediterranean outflow at mid-depth. Each intrusion marked by dye rose as it advanced because 
of the evolution of the density profile, leading to the increase of density at each depth. In one 
experiment monitored on the time-lapse video the input salt plume fed out into the interior at a 
level which rose steadily until it reached the surface. It then dropped rapidly to the bottom 
again, and rose a second time, the two cycles being completed between 15 and 25 hours into 
the experiment. The concentrations of sugar and salt were measured in two ways. A 
polarimeter record (of the total sugar in a light beam shone through the tank) showed 
fluctuations with a 45-60 min timescale, corresponding to the passage of fronts past the point 
of measurement. This confirmed that the fronts observed with dye streaks were not a artefact, 
but represented a real unsteady aspect of the flow. The vertical distributions of both sugar and 
salt were deduced by withdrawing samples at discrete times and various positions and depths, 
and measuring their density and refractive index. These values were inverted to give salt and 
sugar concentrations using the Ruddick and Shirtcliffe [6] results. The differences in 
properties over the bottom half of the tank at the centre evolved from the finger sense at the 
start to the diffusive sense after several days, with excursions due to the passage of fronts. 

Evolution of three experiments with different initial conditions 
The final three related experiments to be described were carried out with George 

Veronis while he was on leave in Canberra earlier in 1996. We monitored, by withdrawing and 
analysing samples over many days, the evolution to a steady state of experiments in which the 
densities of the original fluid in the standard tank and the salt and sugar inputs were the same 
(S.G. 1.10). The only difference was that in the three experiments the tank fluid was pure salt, 
pure sugar and a 50:50 mixture, respectively. The inputs at each end of the tank were at mid 
depth, each at 5 ml/min, and the constant-head withdrawal was also at mid depth, in the centre. 

With homogeneous salt solution initially in the tank, the top to bottom density 
difference increased steadily over time, reaching an asymptotic maximum after about 100 
hours. The stratification developed a clear two-layer structure during the first day. Both the 
top and bottom salt concentrations (gm/gm of solution) fell continuously as sugar was added, 
with the top concentration remaining the higher. The sugar concentration in the top rose to its 
final value, lower than either of the salt concentrations, in about 40 hours, which is twice the 
replacement time.  The bottom sugar concentration rose to a higher value than either salt 
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concentration (but of course less than the undiluted input sugar concentration, because of the 
dilution with water in the environment). The total (depth integrated) values of the 
contributions of sugar and salt to the density also reached a steady state in which they were 
nearly equal. With sugar alone in the tank initially the evolution of the density difference was 
much faster in the early stages, and so were the changes in sugar and salt, but the final 
asymptotic values were little different from those in the first experiment. The experiment 
starting with a 50:50 sugar/salt mixture in the tank was monitored in most detail and for the 
longest time. Again the initial evolution was rapid, but the same asymptotic state as in the 
other two experiments was achieved in about 100 hours. Some oscillations in sugar and salt 
values were seen in this case, perhaps reflecting small differences in the properties or input 
rates of the sources. The top salt concentration rose rapidly, overshot its final value, and fell to 
just above the initial salt concentration in the tank. The top sugar concentration fell rapidly (in 
one replacement time) to the final value, with no overshoot. The concentrations at the bottom 
changed more slowly, in the sense to be expected from the initial concentrations in the tank. 

The final distributions in all three experiments corresponded quite closely to the 
"rundown" state of a two-layer diffusive system i.e. what would be achieved if a layer of salt 
solution, S.G. 1.10, were placed over a layer of sugar solution having the same density and 
depth. Interpreting the "asymptotic" profiles in this way leads to a flux ratio of 0.475, not very 
different from the values measured for a diffusive interface in one-dimensional experiments, 
and it could certainly not be achieved by rundown across a finger interface. But it is not clear 
how this could be the relevant mechanism, in the three experiments that evolved in such 
different ways. Perhaps the system achieves this state of minimum potential energy by a 
different mechanism. In subsidiary experiments we observed very strong localized transports 
of sugar downwards in plumes forming on the central interface near the sugar source, and this 
could produce the much larger sugar concentration observed at the bottom. 

Discussion 
These exploratory experiments have shown how horizontally separated sources and 

sinks with different double-diffusive properties can produce complex effects in closed regions, 
even in simple geometries. The evolution to an asymptotic state having the maximum vertical 
density difference may not be steady or monotonic, and it is certainly sensitive to the boundary 
conditions. The 'final' state of stratification may have complicated horizontal velocities 
superimposed on it, with unsteady intrusions and interleaving motions. There are several 
different timescales in the problem, related to the overall replacement time of the tank fluid, the 
velocity of intrusions and the vertical property fluxes. Although the final three experiments 
showed how the same final state can be achieved starting from different initial conditions, other 
experiments not discussed have suggested that several quasi-equilibrium states can exist for 
given external boundary conditions. There may be states compatible with given inputs which 
can not be realized from some starting conditions without a finite perturbation of the system. 
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Weakly nonlinear convection 

Keith Julien 
University of Colorado 

The lecturer presented a two lecture tutorial on the use of small amplitude asymptotic analysis 
in the study of nonlinear phenomena in convection. 

The first lecture used the Rayleigh-Benard problem to illustrate some of the general methods 
of weakly nonlinear analysis, deriving the Landau equation and discussing some of its proper- 
ties. The center manifold reduction technique was illustrated using Lorenz' three-component 
model of convection. 

The second lecture focused on bifurcations of higher co-dimension than one and the unfolding 
of the nonlinear dynamics around points in parameter space where multiple bifurcations occur. 
Examples of co-dimension 2 bifurcations were discussed in multi-layer convection, and double 
diffusive convection. 
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Convection in binary mixtures 
Paul Kolodner 
AT&T Bell Laboratories 

and 

Hermann Riecke 
Northwestern University 

This series of four lectures introduced a variety of phenomena seen in experiments with 
binary fluid mixtures and went on to discuss theoretical models of several of them. 

The lectures reviewed experimental results obtained with binary fluid mixtures in rectangular 
cells and went on to describe a series of experiments made with an alcohol-water mixture in 
a narrow annulus. The existence of a thermally driven molecular concentraion flux (the Soret 
effect) modifies the onset of convection in a binary fluid mixture. Depending on the relative 
strength of this effect, the initial instability seen can be either an oscillatory instability or 
steady convection. A variety of different patterns can be seen at low to moderate Rayleigh 
numbers according to the experimental parameters used. These include traveling waves, 

stationary rolls, pulses and dispersive chaos. 

Several theoretical approaches were discussed including direct numerical simulation, an asymp- 
totic analysis of the basic continuum equations and the study of model equations. Numerical 
simulations were shown and compared to experimental results. A weakly nonlinear asymp- 
totic analysis of the basic equations, using center-manifold reduction and assuming a wave 
with slow spatial variation yielded a Ginsburg-Landau equation. The lecturers then went on 
to use the real and complex GL equations, as well as the NLS equation to model a variety of 
the nonlinear dynamics seen in the laboratory and numerical experiments. 
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Simmering the primordial soup: 
Traveling wave convection in viscoelastic DNA 
suspensions 
Paul Kolodner 
AT&T Bell Laboratories 

The lecturer introduced us to some of the peculiarities of convection in a viscoelastic medium, 

describing earlier theoretical work in this field and then going on to discuss his own experimet- 
nal work with DNA suspensions. 

An obstacle to experimental studies of viscoelastic convection in polymeric viscoelastic fluids 
is that in general such fluids are too viscous to convect in practical temperature gradients. 
Kolodner was able to overcome this by using suspensions of DNA, showing that monodisperse, 
semi-dilute suspensions of DNA can be made with a viscosity comparable to that of water but 
a viscoelastic relaxation time of several seconds, allowing one to probe the parameter regime 
where theory predicts the existence of oscillatory convection. He described the practical 
problems involved, such as avoiding mixtures with short chain fragments of DNA that boost 
the viscosity of the medium, and the vulnerability of the DNA molecule in sheared flows. 

Using a monodisperse DNA suspension in a narrow annulus, Kolodner was able to confirm 
that, in the appropriate parameter regime, the first convective instability encountered as the 
Rayleigh number is raised is an oscillatory instability. Nonlinear forms of these oscillations 
were observed to take several forms including spoatially-localazed traveling waves and stant- 
ing waves with very long oscillation periods. 
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Transition to Chaos in Doubly Diffusive Systems 

Edgar Knobloch 

JILA, University of Colorado, Boulder, CO 80309 
and 

Department of Physics, University of California 
Berkeley, CA 94720 

Doubly diffusive systems provide numerous instances of chaotic behavior, both in exper- 
iments and in numerical simulations. These systems are characterized by the competition 
between a destabilizing temperature gradient and the stabilizing effect of concentration gra- 
dient, Coriolis force or magnetic field. As a result chaotic behavior occurs in these systems 
already at small to moderate amplitudes, and hence is amenable to interpretation and anal- 
ysis from a dynamical systems point of view, a fact anticipated by Moore and Spiegel (1966). 
In this brief review I shall summarize the present status of our understanding of the transi- 
tion to chaos for both standing and travelling waves that arise as a result of overstability in 
these systems. I will confine my attention to convection in two spatial dimensions, with one 
horizontal and one vertical dimension. Because the mechanisms I shall describe are "generic" 
their details are independent of the specific system considered, and they can be encountered 
in a wide variety of systems. 

Consider a horizontal fluid layer heated from below and suppose that at a critical value 
Rc of the Rayleigh number the conduction state loses stability at a Hopf bifurcation. In 
the presence of periodic boundary conditions (PBC) in the horizontal one looks for weakly 
nonlinear solutions in the form 

rl>(x,z,t) = Aexp{iÜ0t + ikx}fk(z) + Bexp{iÜ0t - ikx}f-k(z) + c.c. + ... (1) 

corresponding to a (non)linear superposition of left and right-travelling waves. Here ^ is the 
streamfunction, fi0 is the Hopf frequency at Rc and k the horizontal wavenumber. Abstract 
theory (eg. Knobloch 1986) shows that the complex amplitudes A(t) and B(t) satisfy the 
equations 

At = [fi + iu + a\B\2 + b(\A\2 + \B\2) + ...]A (2) 

Bt = [fi + iu> + a\A\2 + b(\A\2 + \B\2) + .. .)B. (3) 

Here fi = (R — Rc)/Rc is the bifurcation parameter and u oc \i is the change in the linear 
frequency due to fi. The form of these equations (though not the values of the complex 
coefficients a and b) is independent of the boundary conditions at the top and bottom. 

Because of invariance under translations and phase shifts in time the phases of the two 
amplitudes A, B decouple from the equations for the amplitudes \A\, \B\: 

\A\t = [fi + ar\B\2 + br(\A\2 + \B\2) + .. .]|A| (4) 
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|J5|t = [a + ar\A\2 + br{\A\2 + \B\2) + .. .]\B\. (5) 

Here the subscript r denotes the real part. Generically, these equations have two nontrivial 
solutions, travelling waves (|A|, \B\) = (r,0) or (0,r), and standing waves (\A\, \B\) = (r,r). 
The stability properties of these solutions are summarized in the (aP, 6r) plane in fig. 1. Both 
travelling waves (TW) and standing waves (SW) bifurcate simultaneously; stable solutions 
are present only if both branches bifurcate supercritically and the stable solution is the one 
with the largest Nusselt number (oc \A\2 + \B\2). In the following I will focus on two cases. 
In the first standing waves are stable at onset; in the second travelling waves are selected. 
Observe that the TW have one zero eigenvalue (corresponding to translations and/or phase 
shifts in time) while the SW have two (since translations and phase shifts act differently on 
SW). Thus the SW form a circle of solutions, parametrized by their spatial phase. 
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Figure 1. Bifurcation diagrams vW + |5|2 vSfi in the (ar,6r) plane. Stable (unstable) branches 
are indicated by solid (dashed) lines. 

The two mechanisms for transition to chaos (for SW and TW) both involve interaction 
with steady convection (SS), and are both associated with so-called global bifurcations. To 
understand the nature of this interaction it is convenient to consider the codimension-two 
bifurcation that arises when 00 = 0 (the Takens-Bogdanov bifurcation).   Analysis of the 
unfolding of this bifurcation in the presence of PBC (Dangelmayr and Knobloch 1987) shows 
that with increasing Rayleigh number the TW terminate on the SS branch with their (non- 
linear) frequency ft approaching zero as the square root of the distance from the termination 
pomt.  This type of bifurcation is called a parity-breaking bifurcation, and it is a local bi- 
furcation from a circle of equilibria. In contrast, when the SS bifurcate subcritically (as in 
thermohalme convection) the SW terminate on the unstable SS branch in a global bifurcation 
involving the formation of a heteroclinic orbit connecting two steady states corresponding to 
clockwise and counterclockwise rolls (Knobloch and Proctor 1981, Coullet and Spiegel 1983). 
The formation of this orbit is characterized by a logarithmic divergence of the SW period, but 
unlike the parity-breaking bifurcation implies no change in stability of the SS . On the other 
hand, when the SS bifurcate supercritically (as in magnetoconvection), the SW terminate on 
the SS branch in a local bifurcation (a secondary Hopf bifurcation), as discussed by Knobloch 
and Proctor (1981). 
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Transition to chaotic standing waves 

Suppose first that stable standing waves are selected at onset (region I of fig. 1) and suppose 
that the Rayleigh number is raised. This problem was explored in detail for the partial 
differential equations (pdes) describing two-dimensional thermohaline convection by Moore 
et al (1983) and Knobloch et al (1986b) using idealized boundary conditions. Since for these 
boundary conditions the SW are always unstable to TW (as in region II) these authors 
employed no-horizontal-flux boundary conditions to suppress the instability to TW. The 
results are summarized in fig. 2. The oscillations start out as symmetric oscillations (in, 
for example, the vertical velocity w) and grow in amplitude with increasing R. They then 
undergo what looks like a period-doubling bifurcation in the Nusselt number, but is in fact 
a bifurcation to asymmetry, as can be verified by examining the time series for w. This 
bifurcation was found already by Huppert and Moore (1976) and is a necessary prerequisite 
for true period doubling (Swift and Wiesenfeld 1984). With increasing R a period-doubling 
cascade takes place; beyond the accumulation point of this cascade one finds an interval 
of chaos with the familiar merging of chaotic bands interspersed with windows of periodic 
solutions, much as occurs in the logistic map. This resemblence is not accidental but is a 
consequence of the highly dissipative nature of the pdes. However, in contrast to the logistic 
map, with increasing R one exits from the chaotic region (via period halving) and recovers a 
singly periodic oscillation. Knobloch et al refer to this phenomenon as a bifurcation "bubble". 
With further increase in R this periodic solution suddenly loses stability (at a presumed 
saddle-node bifurcation) and the system makes a (hysteretic) transition to a "second" branch 
of oscillatory solutions, also containing an interval of chaos (and periodic windows). This 
process repeats several times before the final (hysteretic) transition to steady convection. 
This study still represents the most detailed investigation of chaotic dynamics in partial 
differential equations. 

Ns 

FIGUKE 2 Steady and oscillatory solutions of the partial differential equations: schematic 
bifurcation diagram of the solutal Nusselt number Ns as a function of R. Note the bubbles of 
period-doubling bifurcations on the first and second oscillatory branches, the hysteresis loop 
connecting the two branches and subsequent (conjectured) branches. Conjectured unstable 
solutions are indicated by broken lines. 
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A parallel study of truncated Galerkin models (Da Costa et al 1981, Knobloch et al 
1981, Knobloch and Weiss 1983) has proved invaluable in understanding the origin of this 
complex behavior.   The models studied included only the modes necessary to recover the 
solutions of the partial differential equations to second order in amplitude and no other, 
i.e., they were constructed to have the correct small amplitude behavior but were otherwise 
drastically truncated.   Such models go back to the work of Veronis (1965).   Integration of 
the resulting ordinary differential equations (odes) revealed that the bifurcation "bubbles" 
are associated with the formation of a heteroclinic orbit in the phase space of the model of 
the type identified in the Takens-Bogdanov analysis, but now connecting a pair of saddle- 
foci instead of a pair of two-dimensional saddles. These (subcritical) steady states are born 
in a pitchfork bifurcation from the conduction solution that occurs beyond the initial Hopf 
bifurcation; they gain stability only after a secondary saddle-node bifurcation at which the 
branch of steady convection turns around (see fig. 2). The integration of these models revealed 
an even richer wealth of behavior (Knobloch and Weiss 1983) and in particular the presence 
of "gaps" in the solution branches in which no stable oscillatory solutions could be found. An 
appealing picture of what is going on was constructed by Glendinning and Sparrow (1984) who 
extended earlier work of Shil'nikov (1965) on the dynamics associated with a homoclinic orbit 
connecting a saddle-focus to itself in R3. Shil'nikov showed that under appropriate conditions 
on the eigenvalues of the saddle-focus, viz. S < 1, where 8 = a/ß, and the eigenvalues are 
-a± iu, ß (a > 0, ß > 0), the system contains a countably infinite number of "horseshoes". 
The horseshoe construction was studied by S. Smale who showed that the invariant set that 
describes the long time dynamics contains an uncountable number of nonperiodic orbits as 
well as countably infinite number of period orbits of arbitrarily high periods, all of which 
are nonstable (i.e., not attracting).   This then is the situation when the homoclinic orbit 
is present.   Glendinning and Sparrow (1984) constructed a map to investigate how these 
orbits come into being as the homoclinic orbit forms. They showed that the formation of the 
homoclinic orbit is preceded by a countably infinite number of period-doubling "bubbles" 
with hysteretic transitions among them (see fig. 3). Within these bubbles intervals of chaos 
are present, much as in the partial differential equations. Glendinning and Sparrow were able 
to demonstrate, moreover, that the gaps in the solution branches were due to the (pairwise) 
formation of subsidiary homoclinic orbits. These are orbits that start from the saddle-focus 
and go round twice before before connecting back to the saddle-focus. Associated with each 
subsidiary homoclinic orbit is another countably infinite sequence of bifurcation "bubbles" 
and so on. Closely related behavior takes place when a heteroclinic orbit forms connecting 
two saddle-foci related by reflection symmetry, as in the case under discussion.   Parts of 
this remarkable complexity were uncovered by painstaking integration of the pdes and of 
related odes, but in a certain sense these details obscure a very simple explanation:  they 
are an unavoidable consequence of the formation of a homoclinic (or in the present case, 
heteroclinic) orbit satisfying the Shil'nikov condition. 

The formation of such heteroclinic orbits cannot be followed by direct numerical integra- 
tion when the Shil'nikov condition holds - precisely because of the multiplicity of solutions, 
hysteretic transitions among them and the presence of "gaps" in the branches containing no 
stable oscillations. Consequently, the ability to follow the primary solution branch even when 
it is unstable becomes essential in order to demonstrate that the heteroclinic orbit actually 
forms. This was first done for a model of magnetoconvection by Bernoff (1985) using the 
path-following program AUTO. Once the location of the heteroclinic connection is known 
the checking of the Shil'nikov condition is a simple matter of calculation the three leading 
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eigenvalues at the saddle-focus. By leading eigenvalues I mean the eigenvalues with the 
smallest (in absolute value) real parts. In the examples under discussion there is one positive 
eigenvalue (due to the subcriticality of the branch) and either two real negative eigenvalues, 
or a complex conjugate pair with a negative real part. The former occurs when the primary 
Hopf and steady state bifurcations are close to one another (i.e., near the Takens-Bogdanov 
bifurcation), but as the Hopf and steady state bifurcations separate the termination point 
of the oscillatory branch moves up the unstable steady state branch and encounters com- 
plex eigenvalues. The connecting heteroclinic orbit now becomes fully three-dimensional and 
Shil'nikov dynamics becomes possible. While this scenario is well substantiated in the model 
odes no comparable studies for the pdes are available. In fact the Shil'nikov 8 has never 
been computed in the pdes so that the scenario described here must remain a (plausible) 
conjecture. Only in the asymptotic regime in which the convection cells are taken to be very 
thin can the presence of the Shil'nikov mechanism be demonstrated systematically for the 
pdes. In this limit the pdes can be reduced to a set of asymptotically exact odes (different 
from the ode models mentioned above) that are tractable semianalytically, as discussed by 
Proctor and Weiss (1990) and Knobloch et al (1992,1993). 

}<«j< l 
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Figure 3. Variation of the normalized period P with the bifurcation parameter R in the neighbor- 
hood of a homoclinic bifurcation showing the presence of bifurcation "bubbles". The full, broken 
and dotted lines represent stable, non-stable and unstable solutions, respectively. 

Transition to chaotic travelling waves 

We now turn to region II of fig. 1 and focus on the interaction of travelling waves with 
steady states away from the Takens-Bogdanov bifurcation. As the primary Hopf frequency 
is increased (e.g., by increasing the salt gradient) the oscillation amplitude becomes larger 
and the saddle-node bifurcation of the SS branch comes into view. One can now ask what 
happens when the termination points of the SW and TW branches interact with this saddle- 
node bifurcation. This question can be answered in one of two ways. Instead of increasing 
the primary Hopf frequency one can decrease the degree of subcriticality of the SS branch 
thereby bringing the saddle-node bifurcation to small amplitude where it can be captured by 
the unfolding of a degenerate Takens-Bogdanov bifurcation. With no-flux boundary condi- 
tions this analysis was performed by Dangelmayr et al (1985) and shows that the transition 
from the heteroclinic orbit on the unstable SS branch to the Hopf bifurcation that takes 
place on the upper SS branch requires the presence of a structurally stable heteroclinic orbit. 
However, away from this degenerate Takens-Bogdanov bifurcation the details of this transi- 
tion change (because the system becomes higher-dimensional) and can only be described by 

117 



a local analysis near the saddle-node bifurcation (cf. Langford 1983). 
The degenerate Takens-Bogdanov bifurcation with PBC has not been fully analyzed. 

However, the interaction of the TW termination point with the saddle-node bifurcation is 
amenable to simple analysis (Knobloch and Moore 1990). One finds that before the termina- 
tion point reaches the saddle-node the TW branch must lose stability in a Hopf bifurcation, 
creating a secondary branch of modulated TW (hereafter MTW). It is the MTW that are 
responsible for the global bifurcation that produces chaotic travelling waves. The bifurcation 
in question involves a collision between the two-torus on which the MTW live and the circle 
of SS. By itself this is a simple process. But what makes it interesting is what is missing from 
such a local description, namely the dynamics resulting from the ejection of the trajectory 
along the unstable manifold of the SS. This process was studied by Knobloch and Moore 
(1990,1991) using truncated Galerkin expansions of the type already described but this time 
with PBC, but it remains incompletely understood (Knobloch and Landsberg 1996). 

The numerical integrations provide strong evidence that the MTW two-torus becomes 
heteroclinic to the circle of SS states and the circle of standing waves SW. To understand 
why this should be so consider an individual trajectory of the two-torus. At heteroclinicity 
this trajectory trajectory will intersect a particular steady state SS*, where <j> denotes its 
spatial phase. The eigenvalues of this steady state split into two types, those lying in the 
reflection invariant subspace £* containing SS* and those orthogonal to it (cf. Landsberg 
and Knobloch 1991). The former describe the stability properties of SS* with respect to 
perturbations satisfying no-flux boundary conditions in the horizontal. Since the SS branch 
is subcritical at least one of these eigenvalues is positive. In the following we assume that 
there is exactly one such eigenvalue. The latter include a zero eigenvalue associated with 
phase shifts (spatial translations); we assume that the other eigenvalues are all stable. In 
these circumstances it follows that the trajectory spiralling into SS* along the two-torus will 
be ejected from it along the one-dimensional unstable manifold W$ in E*. Generically this 
trajectory approaches an invariant set, such as the standing waves SW*, that is attracting 
in £*. In region II the SW* are unstable with respect to reflection symmetry-breaking 
perturbations and the SW* decay towards TW. Since the TW are themselves unstable to 
MTW the trajectory, after it leaves the SW*, lies on the original two-torus, and is thus 
brought back to the SS circle, but now with a different phase due to the the spatial translation 
undergone during the transition from the SW* back to the SS. The whole process now repeats 
with a different value of <f>. Thus one ends up with a trajectory connecting the two circles of 
SS and SW. Note that because <f> is constant during "half of the above cycle the trajectory 
on the heteroclinic torus corresponds to spatial translation in "fits and starts". 

The Galerkin equations for two-dimensional convection in an imposed horizontal magnetic 
field, 

a' = —era + orb - crC,qd + (T((1 - - w)qde (6) 
V =r —b + a — ac 

—wc + -w(ab + üb) 

(7) 
c' = 

(8) 
d' = —(d + a — ae 

-<cc;e + -w(ad + äd), 

(9) 
e' = (10) 

are among the simplest exhibiting this behavior. Here a,... , e are amplitudes of appropriate 
spatial modes, the prime denotes differentiation with respect to a suitably scaled time, and 
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r, q, a, ( and w are, respectively, the (scaled) Rayleigh number, the (scaled) Chandrasekhar 
number, the Prandtl number, the ratio of ohmic diffusivity to thermal diffusivity, and a 
geometrical factor (0 < w < 4) related to the wavenumber k of the mode that first becomes 
unstable. The reflection-invariant subspace So defined by real a,..., e is invariant under 
the dynamics, and contains both SSo and SWo- Conjugate subspaces S^ may be defined by 
spatial translation x —*• x + <j>/k. Knobloch and Moore (1991) report results obtained for 
q = 1.0, a = 1.0, C = 0.1 and w = 2.66666666667. The conduction state a — ... — e = 0 
loses stability in a Hopf bifurcation producing stable TW and unstable but supercritical SW. 
The TW amplitude increases monotomcally with r—rc before terminating on the unstable SS 
branch below the saddle-node (fig. 4). Before doing so it loses stability in a secondary Hopf 
bifurcation producing a branch of MTW. With increasing r the modulation period increases 
asymptotically as — ln(r^ — r) suggesting the presence of a global bifurcation at r = r^. Fig. 5 
shows c{i) for r = 1.335887484, a value near r^. Since c (like e) is a mean mode it is singly 
periodic, with its period equal to the modulation period. The solution spends a significant 
length of time near c = 0.114154921, the value of c corresponding to the unstable SS at 
T — Th- In between, however, the solution drops rapidly, executing a number of fast small 
oscillations, before growing back to the SS state. Fig. 6 shows a blowup of the projection 
of these oscillations onto the (c, e) plane, showing that the trajectory approaches a limit 
cycle (i.e. the standing wave SW) before slowly spiralling away. This spiralling away is the 
consequence of a weakly unstable Floquet multiplier of the SW in a direction perpendicular 
to S^ and it takes the trajectory from the SW onto the MTW two-torus. This process is 
shown in a different projection in fig. 7. In this plane the SS,/, form a circle of fixed points 
(not shown) centered on the origin, the TW form a limit cycle (not shown) surrounding the 
origin and lying inside the SS circle, and the SW^ correspond to oscillations in straight lines 
through the origin whose orientation is specified by (f>. The figure shows clearly the "capture" 
of the MTW trajectory by the reflection-invariant subspace, the SW part of the trajectory, 
and the subsequent decay of the SW into a growing TW. Such a trajectory visits in due course 
all SS^, and all SW^; in the limit r = r^ it provides the promised connection between the two 
circles of solutions. Note that this trajectory, although complicated, is quasiperiodic and not 
chaotic. Knobloch and Moore (1991) also find circumstances under which the corresponding 
trajectory is chaotic, with chaos appearing via a torus-doubling cascade. In their example the 
SS eigenvalues out of S are both real. In other problems of this type, such as the triple zero 
bifurcation with 0(2) symmetry (Knobloch and Landsberg 1996), one finds the formation of 
chaotic "bubbles" reminiscent of the behavior encountered for SW (fig. 2), and most likely due 
to Shil'nikov-like dynamics when the two SS eigenvalues out of E form a complex conjugate 
pair. Note, finally, that the invariant set responsible for the ejection of the trajectory out 
of E<£ may be more complicated than a limit cycle. We have seen in the previous section 
that the SW in S^ can be chaotic and that for other parameter values SW of any period 
can be found. For the thermohaline problem all of these axe unstable to symmetry-breaking 
perturbations (Knobloch et al. 1986a). It follows that by varying parameters one can locate 
connections between the SS circle and, for example, a circle of strange "attractors". In 
particular one should be able to find a codimension-two heteroclinic connection to countably 
many horseshoes! Such solutions would resemble figs. 5 and 8 but would sample intervals 
of chaotic standing waves separated by intervals of translation, with both intervals getting 
longer and longer as r -+ r/j. A more detailed account of these mechanisms for generating 
chaotic travelling waves can be found in Knobloch and Landsberg (1996). 
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Fig. 4. A typical bifurcation diagram (|a|ä vs. r) for the system (1). The filled (open) circles represent 
local (global) bifurcations. Solid (dashed) lines indicate stable (unstable) branches. The TW and MW 
branches terminate between the two saddle-node bifurcations SN1, SN2. The heterodinic orbit at 
r = rk is indicated by a dotted line. 
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Fig. 5. The time series c(i) for r = 1.335887484, q = 1.0, o - 1.0, (, = 1.0 and to = 2.66666667. 
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Fig. 6. As for fig. 5 but showing a detail of the (c, e) plane. 
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The mechanisms outlined above are not just a dynamical curiosity. A recent paper by 
Cox et al. (1992) on nonlinear Langmuir circulation reports direct numerical simulations of 
the associated pdes with PBC, and presents strong evidence for the presence of a global 
bifurcation of the above type (see fig. 8). The pdes for this problem are closely related to 
those for thermohaline convection in which chaotic travelling waves have been found (Deane 
et al. 1987). Whether a connection of the above type is responsible for the existence of these 
waves is unknown. 
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FlGCEE 7. As for fig. 5 but showing the (Re a, Im a) plane. 
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FIGURE 8. Nusselt number plotted against time, t, for the MW solution near its heteroelinic 
bifurcation with the unstable SS and SW solutions. The unstable SS has Nu — 1 » 1.76, which we 
identify with the long quasi-steady portion of the Nusselt-number time trace. 
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Magneto convection 

Michael Proctor 
University of Cambridge, U.K. 

In these lectures, I discussed the effects of magnetic fields on thermal convection, a subject 
motivated by the dynamically important fields in the the solar convection zone. After a brief 
resume of magnetohydrodynamics, I developed models of incompressible (Boussinesq) and 
compressible convection in the presence of an imposed magnetic field. Important phenom- 
ena discussed included the occurrence of oscillatory convection, the reduction of preferred 
horizontal scale, and the possibility of instabilities with horizontal streaming. 

In the lecture, I showed several videos of simulations of nonlinear convection, and discussed 
these in relation both to the basic theory and to the behavior of solar magnetic fields. 
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Wave Propagation in Granular Flows 

Jonathan Wylie 

1    Introduction 

Granular flows are the movement of large numbers of discrete solid particles. In 

general, the gaps between solid particles will be filled with a fluid (eg. air). However, 

if the particles are closely packed and more dense than the interstitial fluid then the 

majority of the momentum transfer occurs via particle-particle interaction, thus we 

can neglect the effects of the fluid. In this case, there are two extreme cases of 

granular flows. The first is the so called quasi-static limit. Here frictional forces 

between grains dominate the dynamics. In this regime granular material can form 

hills with finite slopes and support loads without yielding. If the load becomes too 

large the friction between grains can no longer support it and so the particles begin 

to flow slowly. This regime has been extensively studied by considering Coulomb 

friction based plasticity models. 

The second case is that of rapid granular flow. In this regime particles are 

highly agitated and collide rapidly with their neighbors. The dynamics are controlled 

by the collisions between grains. The grains are analagous to molecules in a dense 

gas; that is, the grains have large apparently random velocities relative to one another. 

What distinguishes granular media from a perfect dense gas is the fact that collisions 

between grains are inelastic and so energy is lost during collisions. Examples of rapid 

granular flows are landslides and rapid sand flows. 

We adopt a methodology based on the kinetic theory of dense gases with col- 
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lisional loss terms incorporated (Haff 1993). We assume that the particles are all 

approximately spherical with diameter d and mass m. We decompose the velocity of 

the flow into two distinct components: the mean velocity of the bulk material u and 

an apparently random fluctuation from the mean u'. 

We define the root-mean-square of this random fiucuation velocity to be q, which 

we refer to as the agitation, 

q = VV • u'). 

The particles are continuously colliding and thus changing their separation, but 

we define the mean separation s such that the bulk mass density p is given by 

m 
r     (s + d)3 

We restrict our attention to the case of large bulk mass density, where the separation 

between particles is much smaller than the particle diameter; that is 

Thus, 
m 

*-# 

and so the media is approximately of constant density. 

In writing down the equations governing the conservation of mass, momentum 

and energy we adopt the approach used in fluid mechanics. Since the density is 

approximately constant, conservation of mass takes the form 

Vu = 0 

Using dimensional arguments (Bagnold 1954) the momentum equation takes the form 

dui 
dt rdx k 

pSik , (dui     duk 

p \dxk     dxi 
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where (ft is the component of gravity in the i-direction, p is the pressure and v is the 

viscosity. The pressure and the viscosity depend on the agitation of the media and 

the mean separation between particles. The energy equation takes the form 

_0 /V q2\ d +^r~pdxk 

(p     u2      q2\ (dui      duk\ d    (q2' 

Kp      2       2) \dxk     dxij       dxk \2 

where K acts like a diffusivity of agitation and / represents the rate at which energy 

is lost due to the fact that grain-grain collisions are inelastic. The second term on 

the right hand side is due to the viscous generation of agitation from the large scale 

shear, which is equivalent to shear-heating in fluid mechanics. As in the case for p 

and v, both K and / also depend on q and s. 

In order to close the system we must relate the quantities p, v, K, / to the agitation 

and mean seperation. We follow the simple cage model (Hirshfelder, Curtis & Bird 

1964) where each particle is envisaged as being closely surrounded by a 'cage' of 

other particles. The central particle then vibrates with speed q and collides with the 

particles which form the cage. The average distance between the central particle and 

the cage is s. Therefore the collision frequency, /, scales as 

/ ~ q/s- 

The momentum transfered in a collision scales as mq and because the s <^C d the 

surface area of the cage scales as <P. Hence 

P ~ (™q)fj2- 

+puigi-I, 

Rewriting, we obtain 
2 

p = pdp—, 
s 

where p is the dimensionless constant of proportionality. 

In deriving the coefficient of viscosity we consider grain collisions between two 

layers.   The upper layer moves with velocity /Su relative to the lower layer.   The 
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collisions provide tangential stress between the two layers. The average momentum 

transfer per collision is mAu and the collision frequency is q/s. Therefore the tan- 

gential shear stress exerted by the upper layer on the lower layer is proportional 

to 
mAuq 

The shear rate du/dy scales as A/d since the two layers are a distance of order d 

apart. Therefore the stress scales as 

say 

So the viscosity is given by 

v = ud2-, 
s 

where v is the dimensionless constant of proportionality. 

By a similar argument the agitation diffusivity can be found as 

K = KÜ-, 
5 

where as before k is the constant of proportionality. 

To model the collisional energy sink we suppose that the coefficient of restitution 

for a collision between two grains takes a constant value e. Therefore the energy loss 

per collision scales as 

\mq\\ - e2). 

Multiplying by the collision frequency and the number of particles per unit volume 

we obtain 

T       ^ 

s 

where 7 is the dimensionless constant proportional to 1 — e2. 
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2    Long Wavelength approximation 

We consider a layer of particles of depth h(x,t) on a, in general, sloping boundary. 

Taking the long-wavelength limit (shallow layer approximation) we find that the 

governing equations become 

ux + wz = 0, 

Du j. (q 

Dt 
= -<#fi.j   +0sin0 + <f2i>(-u2)   , 

0 = —dp (—)  -gcos0 

and 

2 Dt s  ' [s\2J s 

These equation must be supplemented by suitable boundary conditions. At the 

surface these conditions are relatively straightforward. The kinematic condition 

Dh 
w — ——        at        z = h, 

IS L 

zero tangential surface stress 

d?£> i-uA ->• 0       as       z ->• h 

and zero energy flux through the surface 

<Pk(-[\)   ) ->0       as       z-¥h. 

The boundary conditions that must be applied at the base are more complex and 

will depend upon the nature of the boundary and any energetic forcing which occurs 

at the boundary. 
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Integrating the vertical momentum equation and applying the boundary condition 

of zero presure at the free surface we obtain the hydrostatic balance 

dp I — j = g(h — z) cos 6. 

Using this relation to eliminate s from the remaining equations we obtain 

ux + wz = 0, 

Du                               .         dg cos Ov f(h-z)    \ 
— = -ghxcos6 + gsme + I —uz\ 

and 
Dq       ,gcos6i>ul      ,gcos6k ...        .    .       gcosOj, . 

q7Tt = d—f~i + d-J-((A " z)qz)> dT{h ~ z)q- 

3    Model Equations 

In general the only way to solve the above set of equations is by projection onto 

a truncated set of Galerkin modes. However, we choose a slightly more heuristic 

approach in order to gain more physical understanding. Averaging across the layer 

and making use of the surface boundary conditions gives 

]th + dx Mf 
h        \ 

u dz \ =0, 

ah       \          / rh         \                                           dgcos6u uz 
u dz 1 + dx I /   M  dz J = hgsinö - hhxgcos0 - h ;  
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(rH*Mr- 2       I p vd /  dz — kdh qz\z=0 —l I  (h ~~ Z)<1 dz 
Jo a a Jo 

We follow an approach similar in principle to that used in deriving the shallow 

water equations with viscous drag. The conservation of mass equation becomes 

dth + dx{hU) = 0. 

For the momentum equatiion we estimate the shear stress at the base as a 'Rayleigh 

drag' to obtain 

U 1\ 
dt(hU) + dx(hU ) = hgsin0 — hhxgcos9 — hdgcosOe I — 

hQT 

where e represents the dimensionless drag coefficient. 

When the agitation flux is not given at the base, we should in general examine the 

exact nature of the boundary condition in effect at the lower boundary. However, fol- 

lowing similar arguments for obtaining the drag coefficient, we suppose that the loss 

of agitation through the lower boundary can be modelled as a 'Newtonian cooling'. 

Hence 

Q2S 

dt (hQ2) + dx   hU^-    = dg cos 6 eQV + KdhJ J- 

where K represents the dimensionless agitation loss parameter and Y represents the 

collisional loss coefficient. 

4    Landslides and chute flows 

Consider the case where a granular material flows down a slope.  Then after sub- 

tracting the continuity equation from the other two equations we obtain 
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dth + dx(hu) = o, 

Ut + UUX = g sin 0 — hxg cos 0 — dg cos 0e—, 

dt (QpJ + U6X (Opj = dgcosO 
U2      r un    K 

CQh ~ &hQ ~ T 

4.1    Steady Flows 

We first examine the case of spatially homogeneous solutions of the above equations. 

Then continuity implies that the height of the layer must remain at a constant depth, 

h = ho, 

1     „ „     de fU\ 
gcosO h0 \Qt 

2 1 <Pe fUY     Th0     Kd 
gcosO ho  \QJ d        ho 

It is clear that the above equations do not in general have any steady states. We 

define a critical slope 8C by 

tan 6C = er. 

If 6 < 0C (Shallow slopes) there are no steady solutions, whereas for 0 > 0C (Steep 

slopes) the only steady flow that exists is for a particular value of the depth of the 

layer given by 
_        & 

tin. = 0c     tan20-er" 
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For this value of the height there are is an infinite one-parameter set of steady 

solutions satisfying 
U     h0 tan 6 

Q=      ed 

For the shallow slopes and values of h other than the critical depth, the dynamics 

are unsteady. In order to examine these flows we introduce the variable 

«-! 

so that the above equations become 

dg cos 6 \ d2 I d 

ho      TT      hotan.0 
;Ut =  ; -ft. 

deg cos 6 de 

By definition Q must be positive and we are only interested in the case where U 

is positive, since U being negative corresponds to flows going up a slope. Therefore 

we need only consider positive R. Plotting / against R we see that there is always 

a unique positive root. This root is also clearly always stable. We deduce that all 

trajectories tend to a fixed ratio. The time scale on which trajectories approach the 

fixed ratio scales as deg cos 6/h0Q. Although all trajectories tend to a fixed ratio, 

only the special case where the depth of the layer takes its critical value gives steady 

solutions. 

The time dependent behavior is now easily determined as being in one of three 

cases (See Figure 1). For steep slopes and thick layers (6 > 6C and h0 > h0c) all flows 

continuously accelerate and become more agitated. The agitation and velocity both 

increase linearly with time and so the average separation s increases as the square of 

time. This continuous acceleration can be understood by considering the nature of 

the frictional drag experienced by the flow. When U/Q is a constant the frictional 

132 



force is also a constant and if this is less than the acceleration due to gravity the layer 

will experience constant acceleration. Since our assumption in deriving the density 

equation and the constitutive relations required that s < d it is clear that the model 

must break down at some time when the behavior will depend on the nature of the 

correction to the constitutive relation which is chosen. 

For steep slopes and thin layers (0 > 0C and h0 < h0c) or for shallow slopes 

(0 < 6C) all flows eventually decelerate and lose agitation until they reach the zero 

agitation state in finite time. At this point the granular material loses its fluidization 

and will stop, or at least go into a flow regime governed by the frictional forces 

between individual grains. 

The limiting regime between these two cases is that of steep slope and critical 

layer depth (6 > 6C and h0 = h0c)- In this case all flows will eventually tend to a 

steady solution with the values of U and Q determined by initial conditions. 

4.2    Fixed Mass Flux Flows 

We now turn our attention to steady spatially developing flows where we input a 

fixed mass flux at some point on a slope. In this case continuity implies that the 

mass flux is fixed everywhere along the slope 

Uh = J. 

Then the equations for momentum and agitation become 

(■ 

Jgcos 0\ TT .   .     dg cos 0eU2 

U - —^5—J U* = 9sm°- —J—Q> 

Qx = dgcos0[-f---I---rJ. 
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There are only fully developed solutions for slopes above the critical value (tan29 > 

er): 
_.2_ J2(tan20-er) 
u0 — - 

Qo = 

e<PK 

J(tan2 6 - eT) 
cdK 

At the point where U3 = Jg cos 8 the momentum equation becomes singular. To 

examine this more closely we write the equation in the form 

(U2 \ 
I — + g cos 6h I   = gravitational source — viscous sink 

The quantity in the brackets can be thought of as the available mechanical energy of 

the layer. The constant mass flux implies that this available mechanical energy has 

a minimum. If we now consider the case where the viscous sink term dominates the 

gravitational source term then the energy will decrease until it reaches its minimum. 

At this point a 'hydraulic catastrophe' occurs and time-independent flow cannot 

continue. 

As an example, consider the case where we impose a fixed mass flux and the height 

of the layer at the source such that the the initial velocity is greater than the gravity 

wave speed, so that information only propagates downstream. If the viscous term is 

dominant then the velocity will decrease until it reaches the hydraulic catastrophe. 

At this point the velocity and the gravity wave speed are equal and so a nonlinear 

bore is generated which travels upstream and violates the source boundary condition. 

We note that Johnson et al were able to create sttaionary hydraulic jumps in their 

granular flow experiments. 

We can now examine the behavior of flows as they move down a slope. Ignoring 

nongeneric examples there are three distinct cases. 

1.   Steep slope (0 > 9C) and weak conductive loss to the base Ujj > Jg cos 6 
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(Figure 2). In this case flows develop into one of three different possibilities: 

a) The flow evolves to the uniform state, 

b) Flows decelerate and the agitation goes to zero so that the flow loses its fluid- 

isation in a finite distance, 

c) The flow ends in a hydraulic catastrophe. 

2. Steep slope (6 > 6C) and strong conductive loss to the base UQ > JgcosO 

(Figure 3). In this case flows develop into one of two different possibilities: 

a) Flows decelerate and the agitation goes to zero so that the flow loses its fluid- 

isation in a finite distance, 

b) The flows ends in a hydraulic catastrophe. 

3. Shallow slopes (6 > 0C). In this case all flows terminate in the same way 

(Figure 4): 

a) Flows end in a hyraulic catastrophe. 

We note the important role played by the agitation loss through the base. In the 

case where K = 0 there are no fully developed flows except at the critical slope. For 

slopes greater than critical the flow can continuously accelerate and get thinner as it 

goes down the slope. The asymptotic behavior is given by U ~ x1/4, h ~ x-1'4 and 

Q ~ xx>2. 
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4.3    Finite Mass Release 

We now examine the finite mass release case. In order to do this it is most informative 

to write the equations in characteristic form: 

4 \U - 2(gh cos ef'2} =gsm9- edg cos 9^-       on       ~ = U- (gh cos Of12 

at L i Qh at 

We can now, in principle, calculate the spatial and temporal evolution of a flow. 

We consider a flow in which h = 0 at the front. In this case all the characteristics 

coincide, but the front is retarded by the frictional force which is infinite at the front 

(the constitute relations obviously break down as h tends to zero, but the friction 

can be expected to be large there). Therefore a shock will form at the front of the 

flow. 

There is also the possibility of shock formation, rarefaction and contact discon- 

tinuities away from the front. This will be the subject of a future study. 

5    Agitated Flat Plate 

If we consider the parameter range where both mechanical and agitation inertia are 

negligible then we do not need to resort to the model equations. We can integrate 

the momentum equation and use the condition of zero tangential stress to obtain 
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uz = -—q(hx-t&nd). 

Substitution into the agitation equaion yields 

((h - z)qz)z + 1 (£{hx _ tanOf - |) (h - z)q = 0 

For the continuum assumption to hold we require that the thermal diffusion length 

scale is much larger than the diameter of a grain. Hence we must restrict our analysis 

to the case where collisional loss and shear generated agitation are small. 

We consider the case where a layer of grains lays on a flat plate (ie. 0 = 0) and 

energy is supplied to the layer by collisions with the plate. If the plate moves in 

a sawtooth motion then a simple argument shows that the rate at which the plate 

does work on the layer is proportional to the mass of the layer. If we assume that 

the majority of the work done by the plate goes into agitation then we can impose a 

boundary condition of constant agitation flux per unit height of the layer: that is, 

qz = -—-        at        z = 0. 
Kdg 

There are two distinct cases. Firstly, 

in which case the solution can be found in terms of Imaginary Bessel functions: 

Ty I0[M(h - z)) 
q ~ kdg   MI'Q[Mh}   ' 

In this case collisional loss overcomes the shear generation and so agitation is being 

supplied to the layer through the plate and is then lost via collisions in the interior 

of the layer. 
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Secondly, 
1   /B2

   .     *\ 
>0 1 (£_# _ f 

d? \ku x     kj 

In this case shear generation overcomes collisional losses and so agitation is being 

supplied to the layer by the forcing and generated in the interior. Agitation cannot 

be lost through the free surface and so the layer must become continuously more 

agitated. So there is no steady-state profile and the neglection of inertial terms in 

the agitation equation is invalid. 

However, if we confine our attention to the first case we can examine the evolution 

of a layer. Integrating the stress profile we get 

rft A i-h /■ft p rh 
J   u dz = h u\z=0 — -hx      (h- z)q dz. 

If we take a boundary condition of no slip at the base, then continuity together 

with the kinematic condition at the surface gives 

ht = —dx \hx I  (h — z)q dz j 

The integral in the above expression can be evaluated by integrating the agitation 

equation between the plate and the free surface to obtain 

L 
h,,       s    , hTdpu 
(n — z)q dz = 

g(ji> - p2hl)' 

Hence 

ht = dx 
hha 

Sri»-phi). 
This is a diffusion equation which can be written as 

rpdh{Tu+?hi) . 
ht = TT7 >otox nxx + nondmusive terms. 

g     (71/ - p2hl) 
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Hence the diffusion coefficient is always positive and tends to infinity when col- 

lisional losses balance shear generation. Consequently if we begin with any surface 

displacement having the property that hi < jv/p2 then the displacement will be 

diffusively flattened to a uniform layer. 

6    Conclusions 

We considered the kinetic theory of granular flows developed by Haff (1993) and 

Jenkins k Savage (1987) and developed a long wavelength approximation of gran- 

ular flow. Then by heuristically estimating shear stress and agitational loss terms 

we derived a simple set of model equations which form a framework for examining 

rapid granular flow. This allowed for the first consideration of unsteady and spa- 

tially developing granular flows. The model predicts an interesting set of behavior 

including granular hydraulic controls and rapid shock formation of finite mass re- 

leases. We also showed that if mechanical and thermal inertia are negligible then 

sufficiently small surface perturbations will diffuse away. Future work involves ex- 

perimental verification of the results and further investigation of shock dynamics by 

shock capturing numerical methods. 
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1    Introduction 
Since the "oceanographical curiosity", first observed manifestation of double-diffusive 
convection, was discovered by Stommel, Arons, k Blanchard (1956), one of the main 
questions commonly addressed about this subject has been the effect double-diffusive 
phenomena have on large scale ocean processes (a recent review of the subject has 
been provided by Schmitt 1994). Recent works (see Gargett & Holloway 1991, Zhang, 
Schmitt, & Huang 1996, for example), in particular, have been concentrated on im- 
plications the presence of the different fluxes of heat and salt, maintained by double- 
diffusive convection, has for eddy parameterization in a large-scale model. 

In most previous studies of double-diffusive convection, it seems to have been as- 
sumed that the different rates of diffusion could be due solely to the difference in the 
diffusivity coefficients between the two involved components. Although instabilities 
have been long known to occur also in various ocean-related two-component systems 
described by the equal (eddy) diffusion coefficients and mixed boundary conditions 
(the idea underlying the physical mechanisms causing these instabilities dates back 
to the paper by Stommel 1961), it was not until the work by Welander (1989) that 
the possibility of mixed boundary conditions generating double-diffusive effects was 
raised. The conceptual framework that suggests itself based on the mechanism anal- 
ysed by Welander (1989) could potentially be expected to make double-diffusion ideas 
directly relevant to large-scale ocean phenomena, through eddy-diffusion description. 

The type of stratification considered by Welander (1989) is analogous to the 
diffusive regime of double-diffusive convection. For this reason, the primary in- 
stability distinguished in that work was of the oscillatory type. Recent results by 
Tsitverblit (1996), however, emphasize that a similar mixed-boundary-conditions 
mechanism could also be very effective in producing numerous steady instabilities 
in laterally heated thermosolutal systems. Based on the results of this latter work, 
it was hypothesized by the author that mixed boundary conditions would be capable 
of generating the instability mechanism of the similar nature also in the finger regime 
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Figure 1: Geometry of the problem. 

of double-diffusive convection (i.e., that one could observe a steady instability under 
stratification of the finger type even when the net gradient is statically stable) even 
though the diffusion coefficients would be equal. It is the verification of this hypoth- 
esis and mark-up of the directions in this problem worth further exploration that has 
been the primary purpose of the GFD 1996 summer project. 

2    Formulation and methodology 
The primary attention during the project has been devoted to the computations of 
the bifurcation structure arising in the regime where the destabilizing gradient of 
one component (the analogue of a solute) is maintained by the flux conditions at the 
horizontal boundaries with the gradient of the other component (the analogue of tem- 
perature) being governed by the difference in its values between these boundaries. It 
is because the gradient formed by the component expected to diffuse faster is stabiliz- 
ing while the part of the overall stratification due to the slower diffusing component 
is destabilizing that the regime is referred to as the analogue of the finger regime. 
Apart from the presence of the mixed boundary conditions, the principal difference 
of this configuration from the classical finger regime of double-diffusive convection is 
that the diffusivity coefficients of the components were set equal. 

For the geometry of a horizontal box of width H and height d illustrated in fig. 1, 
the Boussinesq approximation of the steady two-dimensional Navier-Stokes equation 
in the vorticity-streamfunction formulation has been considered together with the en- 
ergy and solute diffusion equations. These equations were nondimensionalized using 
the following scales: 

length scale d for the horizontal x- and vertical j/-coordinates; 
velocity scale v/d, where v is the horizontal kinematic viscosity; 
temperature scale IcTf/gad3, where g is the gravitational acceleration, a the co- 

efficient of volume expansion due to the component analogous to temperature (here- 
inafter, temperature), kx the horizontal diffusivity coefficient of this component; 

solute concentration scale ksv/gßd3, where ß is the coefficient of the density vari- 
ation with respect to the variation of the solute concentration, k$ the horizontal diffu- 
sivity       of       the       solute. 
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With these scales, the nondimensionalized governing equations will look as follows: 

Ihdi ~ dy dx ~ dx2 +    Rdy2     Pr dx     Sch dx { } 

** + U (2) U) = 
dx2     dy 

d$fdt     n   N     d^dt       1 (dH dH 

dx{d~y + RaT) ~ TyTx = Tr^dx~2 + DR
^ (3) 

dxdy      dy dx      Sch[ dx2        Rdy2' U 

where horizontal u and vertical v velocities are 

dt/> dij> u = ~ä?     v = Tx' 
vorticity 

dv     du 
dx     dy' 

temperature 
G = 0o + RaTy +1, 

and C is the solute concentration. Here, 0O and 0O + RaT are the nondimensional 
temperature of the lower and upper horizontal walls, respectively, C is the nondi- 
mensional solute concentration, Pr = u/kT = 6.7 is the horizontal Prandtl number, 
Sch = v/ks = 6.7 is the horizontal Schmidt number, RaT = gad4(^f)/kTv is the 
temperature Rayleigh number, DR = vvjv = kv

T/kT = kv
s/ks is the ratio between the 

vertical and horizontal diffusion coefficients. 
Since the problem was addressed with different possibilities in mind (ranging from 

a finite box to an infinite horizontal layer), several types of boundary conditions were 
used: either the stress-free or the no-slip condition at the horizontal and vertical 
boundaries, as well as either no-flux boundary conditions at the side walls (when 
combined with the stress-free conditions, these could be regarded as representing 
an integer of half a horizontal period) or the combination of the no-flux _ side-wall 
boundary conditions for the heat with the solute side-wall conditions specifying the 
same solute gradient at the side walls as imposed on the fluid interior at the horizontal 
boundaries. After the above transformation of the variable standing for temperature, 
and nondimensionalization, these boundary conditions could be written as follows: 

^ = °'      J^ = °'      ^ + {l-r)Rasy = ü,        (x = 0,    0<y<l);       (5) 

V> = 0,      £ = 0,       r^ + (1 - r)Rasy = 0        (s = 7,    0 < y < 1);     (6) 

dC 
</, = 0,      i = 0,      ~K- = Ras       (0<x<7,    y = 0); (7) 

dy 
dC 

</> = 0,      < = 0,      ^- = Ras       (0<x<7,    y = l). (8) 
dy 

Here, the solute Rayleigh number is defined as Ras = gad4(^)/ksv, where (§£) = q 
is the dimensional gradient of the solute reflecting its flux being imposed at the 
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horizontal walls, 7 = H/d is the aspect ratio, r is a parameter variation of which from 
0 to 1 enables one to switch from the problem with the solute gradient prescribed at the 
side walls to that with no flux of the solute concentration through these boundaries. 

In the latter case, the absolute value of the solute concentration within the do- 
main remains unspecified up to a constant. This could eventually cause unphysical 
variations in the field of the solute concentration and spontaneous changes in the Ja- 
cobian sign (based on which symmetry-breaking bifurcation points are detected), due 
to numerical noise. To avoid these problems, numerical implementation of boundary 
conditions (5)—(8) was slightly different from what is formulated above. In partic- 
ular, the difference in solute concentration was specified at the boundary points of 
one of the vertical cross-sections of the grid (in the middle of the enclosure). Since 
the prescribed difference was consistent with the flux condition specified at all other 
points and because of the relative effect of this perturbation tending to zero when 
the number of grid points is increased to infinity (or when the aspect ratio, to which 
the number of grid points in horizontal direction is proportional, is large enough), 
the formulated problem is expected to be qualitatively identical and quantitatively 
close to the one with the flux condition at the boundary points of all the vertical 
cross-sections. 

Equations (1)—(4) together with boundary conditions (5)—(8) as well as either 
with the no-slip or with the stress-free condition at the boundaries were discretized 
by central finite differences on grids ((23 + 1)7 — 1) x 23. Although some quantitative 
improvement could be obtained by using a higher resolution, the results on this 
grid were found to be qualitatively consistent with those in test runs on finer grids, 
with tolerable quantitative differences in the critical parameters. This grid was also 
found to give rather close agreement with the results of Cliffe & Winters (1986) for 
the Benard problem with Dirichlet boundary conditions. The Euler-Newton and 
Keller (1977) arclength continuation algorithms were used to trace out the steady 
branches as Ras was varied and Raj fixed, for different aspect ratios. Stability of 
the steady solutions computed in this way was studied by examining time response 
of the linearized time-dependent version of the governing equations to the initial 
perturbation. 

The results will be presented here for 7 = 3,5, which was found sufficient to 
represent the essential qualitative features of the instabilities. Although some com- 
putations have been done for Raj = 100000 and the larger values of this parameter, 
it is only the results for Rax < 20000 that will be presented in this report. 

3    Results and interpretation 

3.1    The equal vertical and horizontal diffusivities 
The principal outcome of this work is that the convective instability was found to 
set in under a statically stable overall gradient even when the diffusion coefficients 
are equal, which should be attributed to the effect of the mixed boundary condi- 
tions on the diffusion gradients in the perturbed state similar to that described by 
Welander (1989). The dependence of the solute Rayleigh numbers characterizing the 
onset of the primary instability in the problem of the aspect ratio 7 = 5 with the 
various boundary conditions is illustrated in fig. 2. It follows from this figure that 
the velocity boundary conditions at the side walls of the box with such a large aspect 
ratio have almost no effect on the critical Ras of the instability, while the onset of the 
latter depends significantly on the type of the velocity boundary conditions (whether 
stress-free or no-slip) at the horizontal boundaries. As can be seen from figs. 3,4, 
representing the aspect ratio 7 = 3, the behavior of the bifurcations and the forms 
of the instabilities are highly consistent with those in the Rayleigh-Benard problem 
with flux boundary conditions: the primary instability sets in at the most unstable 
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wave length that is as long as is allowed by the geometry restrictions and is followed 
by the instabilities with the decreasing wave length. This is indicative of that zero 
horizontal wave number, being the critical one for the instability in the above case 
of Benard convection in an infinite horizontal layer (Hurle, Jakeman Sz Pike 1966), 
is also likely to be the most unstable mode for such a layer with the two-component 
stratification defined analogously to the configuration considered in this report. 

It is interesting to note in this respect that the value of Ras characterizing the 
primary instability for 7 = 5, RUT — 10000, and no-flux side-wall boundaries (fig. 2 
a) is significantly lower than that for 7 = 3 (fig. 3). If one assumes that this trend 
continues to hold when the aspect ratio is further increased, it appears quite likely 
that the onset of the primary instability in an infinite horizontal layer would deviate 
only very little from that for Benard convection, barely depending on the value of 
the stabilizing temperature gradient at all. The reason why the increase of the rate 
of temperature stratification may have only relatively small effect on critical Ras is 
discussed in the end of the Discussion section. The fact that the weak dependence 
of the critical Ras on Raj seems to become clearly noticeable only for the large 
aspect ratios could be associated with the relative role of the single vertical cross- 
section where the values of the solute concentration were specified at the horizontal 
boundaries being more pronounced for the smaller aspect ratios. In other words, since 
this cross-section prevents formation of the different diffusion gradients in its vicinity 
it may have a more significant effect on the two-component problem than on Benard 
convection (in the latter case, the difference in the critical Ras between 7 = 3. and 
-y = 5 was not found to be as significant as for the double-component stratification). 
When the same interval of discretization is used, the more significant perturbation 
caused by the cross-section in the enclosures of the smaller aspect ratio would make 
the critical parameters in the double-component configuration to be more away from 
where they would have been without the perturbation (presumably, near the values 
characteristic of Benard convection). 

Conclusions about stability of the steady solutions can be quite reasonably inferred 
from the results represented in figs. 3,4. In particular, since all the bifurcations are 
supercritical, the patterns characteristic of the steady solutions not far away from the 
respective bifurcation points (they are approximately the same as those represented 
in fig. 4) could be viewed as reflecting the shapes of the respective eigenvectors, 
which means that all eigenvectors involved are different. Assuming that there is no 
degeneracy in the eigenvalues, this implies that all eigenvalues becoming zero at the 
symmetry-breaking bifurcation points are also different. Since at the low values of 
the solute Rayleigh number all these eigenvalues are stable, each of the sequence of 
bifurcations is associated with one of the new eigenvalues becoming unstable. There- 
fore, it is only the solution arising from the first pitchfork bifurcation that is expected 
to be stable, while all other asymmetric branches (by referring to branches as asym- 
metric, it is implied that they are asymmetric with respect to at least one type of 
the two reflectional symmetries characterizing the problem) are characterized by the 
presence of eigenvalues having become unstable at the preceding bifurcation points. 
These arguments were directly confirmed by examination of the linear stability of the 
solutions. 

When the destabilizing solute gradient is imposed also at the side-walls, this 
boundary condition prevents the instability from selecting the zero horizontal mode. 
For this reason, the observed primary instability is characterized by two counter- 
rotating cells, rather than the single one (figs. 5,6). This was also found similar to 
the respective events in Benard convection. Although the average cell thickness of 
the subsequent bifurcations was also found to decrease (like in the formulation with 
the no-flux solute boundary conditions at the side walls), specification of the solute 
gradient at the vertical boundaries produces patterns with odd number of cells that 
are qualitatively different from the case with the no-flux side-wall conditions for the 
solute: the cells observed in these steady solutions are of the different horizontal sizes. 

149 



Like for the no-flux solute side-wall boundary conditions, it is only the branch arising 
from the first bifurcation that is stable. 

3.2    Nonequal vertical and horizontal diffusivities 
According to the mechanism following from interpretation of Welander (1989), sug- 
gested for the analogue of the diffusive regime, it appears that it is the nonequal 
gradients in the vertical direction that play the primary role in the instability sce- 
nario. Since in the oceanographically relevant situation the diffusion rate is deter- 
mined by such gradients multiplied by the vertical diffusivities that are much smaller 
than the horizontal ones, it seemed reasonable to get some insight into what effect the 
decrease of the vertical/horizontal diffusivity ratio, DR, has on the observed instabil- 
ities. With these considerations in mind, computations have been performed in the 
range of DR = kj-fkx = kg/ks = vvjv < 1. Although some results for DR < 0.1 were 
also obtained, their relative complexity required more time for processing the data 
and additional runs for their understanding. Therefore, the attention here is going to 
be concentrated on the data obtained only for DR = 0.1. 

For understanding the events in the case when the two components are involved, 
however, it would be useful to have some information about what happens when DR < 
1 in Benard convection with the flux boundary conditions (this would be equivalent 
to RT = 0). As can be seen from figs. 7,8, the events in this case appear to be 
qualitatively identical to the corresponding configuration with DR = 1. The principal 
quantitative difference of this configuration from Benard convection at DR = 1 is that 
the critical Rayleigh number (in our case, it is Ras) drops from ~ 120 (for the stress- 
free horizontal boundaries) to ~ 20. This should probably be attributed to the fact 
that vertical diffusion provides a mechanism for redistribution of the energy supplied 
at one of the horizontal boundaries and taken away at the other. Up to a certain point 
the diffusion along with viscous effects can prevent convection from manifesting itself. 
When the vertical diffusion is very weak, however, much smaller flux is required to 
destabilize the system. It is not surprising, therefore, that when DR was decreased 
below 0.1, the critical Ras were found to approach zero. It is interesting that this 
observation appears to substantiate algorithms often incorporated into ocean models 
according to which denser fluid found above lighter one is interchanged with the latter 
irrespective of the quantitative parameters of the density difference between the two 
fluid layers. 

Since vertical diffusion is expected to be a destabilizing factor in the two-component 
system, in contrast to Benard convection, the decrease of DR to 0.1 turns out to 
have the stabilizing effect: as can be seen from fig. 9, with the increase of Raj, the 
critical values of the solute Rayleigh number very soon become distinctively higher 
for DR = 0.1 than when DR = 1 (fig. 2 a,b). Moreover, the results illustrated in 
figs. 10,11 demonstrate that the flow patterns in the double-component case with 
DR = 0.1 become substantially different from those in Benard convection with the 
same DR. 

In particular, two corotating long thin cells (layers) are observed at the onset 
of the primary instability (fig. 11 a). The symmetry that they have preserved is 
reflection between the corner points belonging to a diagonal of the domain. At the 
second bifurcation, the horizontal symmetry is broken while the vertical one is re- 
tained (fig. lib). Similarly to the situation with the vertical diffusivity being equal 
to the horizontal one, the subsequent bifurcation is characterized by the doubling of 
the number of cells in the horizontal direction compared to the convective flow arising 
from the first bifurcation: the four cells present have the same sense of rotation when 
compared vertically and the opposite sense when compared horizontally (fig. 11 c). 
The symmetry preserved by this flow is the horizontal one. As the solution is contin- 
ued farther away from bifurcation point B3, the layers at one of the horizontal levels 
move away from each other (fig. lid). 
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The flow pattern arising at bifurcation point BA, is characterized by the counter- 
rotating cells both in vertical and horizontal comparison (fig. lie). As the solution 
is continued to the strongly nonlinear regime, however, the weaker cells gradually 
vanish (fig. 11 £ represents the branch oppositely asymmetric to the one in fig. 11 
e). Following the same regularity as before, the next bifurcation (B5) is associated 
with the formation of two layers with four cells in each of them; the cells rotate in 
the same sense when compared vertically and in the opposite one when compared 
horizontally (fig. 11 g). It appears that the interaction in the interfaces between the 
respective corotating cells of the two horizontal layers causes suppression of some of 
the cells from the vertically interacting pairs when the solution is continued to the 
strongly nonlinear regime (fig. 11 h). At bifurcation point B6, all cells arising are 
counter-rotating with respect to both their vertical and horizontal neighbours (fig. 11 
i), which seems to be consistent with the regularity observed for the series of the 
preceding bifurcations. The net gradient at bifurcation point B7 is already unstable, 
for which reason the patterns forming are characteristic of Benard convection (fig. 11 

Lastly, it is worth mentioning that when some of the branches bifurcating from 
the no-flow solution were continued, changes of the Jacobian sign were noticed, which 
indicates that secondary bifurcations should also be expected for the nonequal diffu- 
sivities. Although these branches were not computed in the framework of this summer 
project, their investigation certainly appears to be worthwhile. 

4    Discussion 
Since time limitations did not allow to process some obtained data for the verti- 
cal/horizontal diffusivity ratio DR < 0.1, it is difficult to predict here the details of 
the behavior of the instabilities when DR < 0.1. Based on our understanding of the 
physical mechanisms bringing about these instabilities, however, their nature would 
have to be crucially related to the different rates of the vertical diffusion. Therefore, it 
seems reasonable to expect that the further decrease of the vertical diffusivity would 
make the physical effect associated with the formation of different diffusion gradients 
due to the mixed boundary conditions less noticeable. This was found consistent 
with the Jacobian sign change not being observed up to the values of the destabi- 
lizing solute gradient being equal to the one specified by the stabilizing temperature 
difference, during preliminary examination of data for DR < 0.01. It is only a more 
detailed analysis, however, that could determine whether this has been a result of all 
the bifurcation merely moving to the higher values of the solute gradient (until the 
net gradient becomes neutral and unstable) or there are some other more complex 
mechanisms responsible for their vanishing. 

If the vertical temperature gradient forming in the perturbed state keep increasing 
with the decrease of the vertical diffusivities, on the other hand, it seems one could 
expect that the different rates of diffusion might be maintained. This could be pos- 
sible if the gradient characterizing the background state (this gradient is the origin 
of the high temperature gradient in the perturbed state) grows with the decrease of 
DR. That is, with the increase of the temperature gradient, the presence of the insta- 
bilities for the statically stable net gradient might be restored. That samegrowing 
temperature gradient not only increases a stabilizing part of the overall stratification, 
but also enhances the high gradients in the perturbed state that are responsible for 
the different rates of diffusion bringing about the instability mechanism. The validity 
of this conception is planned to be verified at the later stages of this study. 
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5 Conclusions 

It has been demonstrated that, even when the diffusion coefficients of the components 
are equal, the destabilizing solute gradient maintained by the flux conditions at the 
horizontal boundaries is capable of generating convective instability when it is just a 
small fraction of the stabilizing gradient governed by the temperature difference. The 
instability was found to set in at the long horizontal wave length, and the results sug- 
gest that the most unstable wave number for the infinite horizontal layer of fluid could 
be equal to zero, like in Benard convection with flux boundary conditions. Similarly 
to the Benard convection configuration, the long wave length primary instability was 
found to be followed by a series of the bifurcations with a decreasing horizontal wave 
length. This resemblance should probably be attributed to the fact that in both cases 
(i.e., with and without the temperature gradient), the instability derives its potential 
energy from the component maintained by the same, flux-type, boundary condition. 

It appears that even a large increase of the stable rate of temperature stratification 
in a box that is long enough (i.e., where the conditions are sufficiently close to those 
in an infinite horizontal layer) would produce only a relatively small quantitative 
change in the critical values of the destabilizing solute Rayleigh number with respect 
to those with no temperature stratification at all (Benard convection). This would 
have to be attributed to the two-fold role of the temperature gradient: its increase 
not only enhances the stabilizing part of the overall stratification but also causes the 
higher difference in the diffusion gradients. 

The velocity boundary conditions at the horizontal walls were also found to have 
an effect similar to that observed for Benard convection (i.e., when the temperature 
gradient is absent): for the no-slip boundaries, the instability was found to manifest 
itself at the larger values of the solute Rayleigh number than for the stress-free ones. 
The effect of the presence of the consistent value of the solute gradient at the side 
walls, apart from replacing the most unstable long wave length (presumably, zero 
wave number) by the one corresponding to the width of the domain, was found to 
lead to the formation of flow patterns with different cell sizes. 

The decrease of the vertical diffusivities with respect to the horizontal ones was 
found to make the results essentially different from those characterizing the respective 
case of Benard convection. Unlike Benard convection, in particular, the patterns 
arising from the series of bifurcation points turned out to have a two-layer structure, 
and indications of the presence of secondary bifurcations were observed. In addition, 
the onset of the primary instability for large enough Raj, even though observed when 
the overall gradient is still far from being unstable, is characterized by distinctively 
higher values of the solute gradient than for the respective formulations with the 
equal diffusivities, whereas when the temperature gradient is absent, the decrease 
of the vertical/horizontal diffusivity ratio has a clearly destabilizing effect. This 
latter observations should probably be attributed to the instability mechanism in 
the double-component case being essentially due to vertical diffusion, as opposed to 
vertical diffusion being a stabilizing factor in Benard convection. 

6 Intended developments 

The first issue planned to be addressed is the linear stability analysis of an infinite 
horizontal layer stratified by two components as considered above, which was be- 
gun, but not completed, during this summer program. It is hoped that through this 
analysis it will be possible to demonstrate analogy of the considered problem with 
Benard convection with flux boundary conditions (the analogy between the classical 
finger regime and the conductive Benard problem, for example, was demonstrated 
by Stern 1960). Both linear stability study and the nonlinear 2-D computations in a 
box are expected to address the formulation with the nonequal vertical and horizon- 
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tal diffusivities in more detail, including the issues of the secondary bifurcations and 
behavior of the instabilities at the values of DR smaller than those used above. Ex- 
amination of the effects of rotation on the instabilities also appears to be a reasonable 
objective. 

Towards the end of the Program, it was pointed out by E. Spiegel that the long 
wave length instability made the non-Boussinesq effects important in Benard convec- 
tion (Depassier k Spiegel 1982), which indicates that they may have significance also 
in the present problem. For this reason, introduction of such effects into the model 
equations and extension of the steps described above to the non-Boussinesq fluid is 
also expected to be an interesting development of this work. 
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Figure 2: Marginal stability boundaries for the aspect ratio 7 = 5; (a) all boundaries being stress- 
free with no-flux conditions prescribed for both components at the side walls; (b) no-slip horizontal 
boundaries with stress-free and no-flux (for both components) side walls; (c) all boundaries being 
no-slip with the no-flux condition prescribed for both components at the side walls; (d) all boundaries 
being no-slip with the solute gradient and no temperature flux prescribed at the side walls. 
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Figure 3: The schematic diagram of the variation of a measure <£(x) of solution vector x with 
solute Rayleigh number Ras; 7 = 3, RUT = 10000, the horizontal and side-wall boundaries are 
stress-free, and no-flux conditions are prescribed for both components at the side walls. Al, ...,A5 
are the bifurcating branches, Bl,...,B5 are the symmetry-breaking bifurcation points (only one 
asymmetric branch for each of the pitchfork bifurcations is depicted). 

Figure 4: Flow patterns arising from the series of bifurcations as Ras is increased; 7 = 3, 
RaT = 10000, with all the boundaries being stress-free and no-flux conditions being prescribed 
for both components at the side-walls; \£: streamlines; T: isotherms; C: the lines of the constant 
solute concentration; (a) branch Al, Ras = 5220; (b) branch A2, Ras = 5139; (c) branch A3, 
Ras = 9068; (d) branch A4, Ras = 10697; (e) branch A5, Ras = 17836. 
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Figure 5: The schematic diagram of the variation of a measure <j!>(x) of solution vector x with solute 
Rayleigh number Ras; 7 = 5, RUT — 10000, the horizontal and side-wall boundaries are no-slip, 
with the solute gradient and no temperature flux prescribed at the side walls. Al, ...,A6 are the 
bifurcating branches, 51,..., 56 are the symmetry-breaking bifurcation points (only one asymmetric 
branch for each of the pitchfork bifurcations is depicted). 
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Figure 6: Flow patterns arising from the sequence of the bifurcations as Ras is increased; 7 = 5, 
Rar = 10000, all the boundaries are no-slip, the solute gradient and no temperature flux are 
prescribed at the side walls; \P: streamlines; T: isotherms; C: the lines of the constant solute 
concentration; (a) branch Al, Ras = 5128; (b) branch Al, Ras = 5099; (c) branch A3, Ras = 9644; 
(d) branch AA, Ras = 10370; (e) branch A5, Ras = 12177. 
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Figure 7: The schematic diagram of the variation of a measure <j>(x) of solution vector x with 
solute Rayleigh number Ras; 7 = 5, RaT = 0 (Benard convection), DR — 0.1. The horizontal and 
side-wall boundaries are stress-free, with no flux of solute prescribed at the side walls. Al,..., A4 
are the bifurcating branches, SI, ...,54 are the symmetry-breaking bifurcation points (only one 
asymmetric branch for each of the pitchfork bifurcations is depicted). 
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Figure 8: Flow patterns arising from the series of bifurcations as Ras is increased; 7 = 5, 
RaT = 0 (Benard convection), DR = 0.1. All the boundaries are stress-free, with no flux of solute 
being prescribed at the side walls, ^f: streamlines; T: isotherms; C: the lines of the constant solute 
concentration; (a) branch Al, Ras = 31; (b) branch Al, Ras = 57; (c) branch AZ, Ras = 111; (d) 
branch A4, Ras = 239. 
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Figure 9: Marginal stability boundaries for the aspect ratio 7 = 5 and DR = 0.1; (a) all the 
boundaries are stress-free and no-flux conditions are prescribed at the side walls for both components 
(the solid line); (b) all boundaries are no-slip, with no-flux (for both components) side walls (the 
dotted line). 
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Figure 10: The schematic diagram of the variation of a measure </>(x) of solution vector x with solute 
Rayleigh number Ras; 7 = 5, Rar = 10000, DR = 0.1. The horizontal and side-wall boundaries 
are stress-free with no flux of temperature and solute prescribed at the side walls. Al,..., Al are the 
bifurcating branches, Bl,..., Bl are the symmetry-breaking bifurcation points (only one asymmetric 
branch for each of the pitchfork bifurcations is depicted). 
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Figure 11: Flow patterns arising from the series of bifurcations as Ras is increased; 7 = 5, 
RaT = 10000, DR = 0.1. All the boundaries are stress-free, with no flux of temperature and solute 
being prescribed at the side walls. *: streamlines; T: isotherms; C: the lines of the constant solute 
concentration; (a) branch Al, Ras = 3001; (b) branch Al, Ras = 6056; (c) branch ,43, Ras = 5897; 
(d) branch A3, Ras = 6452; (e) branch A4, Ras = 6100; (f) branch A4 (the branch opposite to the 
previous one), Ras = 6420; (g) branch Ah, Ras = 8430; (h) branch Ah, Ras = 9048; (h) branch 
AQ, Ras = 8780; (i) branch Al, Ras = 10753. 

159 



An Analog of Double-Diffusive Instabilities in Magma 

Chambers 

Tonushree Kundu 

August 20, 1996 

1    The General Problem 

Flows in magma chambers can be double-diffusive and form "fingers" just as ocean water does. In 
this instance, however, the compostion of the magma's constituents plays the role of "salt" because 
of its low diffusivity. A schematic of a typical magma chamber is displayed in Fig 1. This situation 
arises when warmer, newer magma B is suddenly injected into the magma chamber containing 
magma A, which has equilibrated with its surroundings. The properties of the two magmas are 
highly dependent on the crystals and bubbles in suspension. As magmas heat and cool, different 
components crystalize or melt in the magma and remain suspended due to the high viscosity. Also, 
because these crystals are anhydrous, they leave behind excess water. The magma can become 
saturated in water and then form bubbles. Typical density and viscosity profiles are shown in Fig. 
2. For a cooling magma, the density increases when dense crystals form, and the density decreases 
when light crystals or water bubbles form. Also, viscosity decreases with temperature. 

'   //  / 

Fig. 1: A schematic of a typical magma chamber. 
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Fingering will happen on the portion of the curve where p increases with T, and the following 
analysis refers to this situation. 
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Fig. 2: Typical profiles of p vs. T and (i vs T for magmas A and B. 
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The profiles of temperature, concentration, density, and viscosity in the initial state and at 
time t are shown in Fig. 3. The temperature diffuses on a scale ST ~ y/itrt while the concentration 
diffuses on a scale 6c ~ ^Kat where, «r(~ 10-6ma/s) is the diffusivity coefficient of heat and 
KC(~ 10_9m2/*) is tne diffusivity of concentration. Since K0 <C *cT, the concentration profile can 
be assumed constant over time. The upper magma will then increase in density as it is warmed, 
and the lower magma will decrease in density. Since the concentration remains constant, the fluid 
right above this interface can become more dense than fluid right below. It may even become more 
dense than the whole underlying fluid. In the latter case, the fluid above the interface will want to 
punch through into the lower layer and form fingers. This case is referred to as "globally unstable", 
while the case where the fluid just above the interface is less dense will be referred to as "globally 
stable". "Neutral" refers to the intermediate case where the fluid right at the interface is as dense 
as the underlying fluid. For the evolving profile of viscosity, a similar reversal can occur. 
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\ 

Fig. 3: Typical profiles of T,C, p, and \i through the magma 
chamber in the initial state and at time t. 
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2    A Simplified Picture 

In order to simplify the analysis, the real density profile is characterized by with density jumps 
and no surface tension (Fig. 4). Since the viscosity is also a function of temperature, each of the 
four layers may have a different viscosity. The Rayleigh-Taylor instability of these 3 interfaces can 
be analyzed and then extended to include deepening of the layers as a model of thermal diffusion. 

H> OF. 

Fig. 4: Simplified density profile. 

In a magma chamber, the viscosities are very large and Stokes flow (V*ip) can be assumed. In 
layer j, the stream function will have the form 

and at the interface the following matching conditions are imposed: 

1) Tangential velocity 

2) Normal velocity 

3) Tangential stress 

Hj-iiD2 + *2)Vv-i = Mi (I?3 + *3)^i 

(1) 

(2) 

(3) 

(4) 
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4) Normal stress 

^i {D2 - 3k3) Ufc.x + ^ (2?2 - 3Jb3) Zty; = ~g (Pi-i - /v) V-y-i (5) 

where D = ^j. In general, this problem involves 12 equations in 12 unknowns. 

3    The Symmetric Problem 

In order to make the problem more tractable and gain some understanding of how the stable 
upper and lower interfaces react to a perturbation of the unstable middle interface, the symmetric 
problem shown in Fig. 5 is considered. Note that this situation is not representative of magma. 
The density jumps across the first and third interfaces are the same, the inner viscosities are equal, 
and the outer viscosities are equal. The only physically realizable streamfunctions will have the 
same form at the first and third interfaces, interfaces are identical. This reduces the problem 
to 6 equations in 6 unknowns. Lengths are non-dimensionalized with respect to h and times are 
non-dimensionalized with repect to x£

%oh.' Define the density ratio Q = 2A^"1 and viscosity ratio 
R = ji2.. The dispersion relation (with Q = 1.0 and R = 0.1) is plotted in Pig 6. Asymptotics 
of the dispersion relation show that as Jfe —♦ 0, a ~ ifc2, and as Jb —♦ oo, <r ~ j. The stable "global 
mode", in which the stable first and third interfaces deform much more than the unstable middle 
interface, will decay. The unstable "interfacial mode" where the middle interface deforms and the 
other two react is considered. 

Mi 

p-r-XAf Ma. 

p+4f /*! 

Fig. 5: Schematic of the symmetric problem. 

Four limiting cases are displayed in Fig. 7. For R —► 0, the outer fluid is much more viscous 
than the inner fluid, and, in fact, seems rigid. In this case, the outer interface will not deform at 
all. For R —* oo, the cases Q —♦ 0 and Q —* 2 must be considered separately. For Q —► 0, the 
unstable density jump in the middle is much smaller than the stable density jumps outside, so 

163 



there will not be enough forcing to deform the outer layers. For Q -* 2, the middle density jump is 
larger than the outer jumps and there will be enough forcing to deform the outer interfaces. Since 
R -* oo, the outer fluid seems inviscid compared to the inner fluid and will just deform like the 
inside layers. 
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Fig. 6: Growth rate a a function of wavenumber k for Q = 1.0 and R = 0.1 
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Fig. 7: Limiting cases: R -* 0, oo ; Q —► 0,2. 
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A plot of the ratio of deformation of the outer interface to the inner interface is given in 
Fig. 8 and confirms the expected limiting conditions. The asymptotic values of the maximum 
growth rate, a*, and wavenumber of maximum growth, Jb*, are determined. For R —♦ 0 and all 
Q,a* = S/n(Jb*) and Jfe* is a constant independent of Q and Ä. Note that <r* ~ ^ implies 
that the dimensional growth rate aD ~ -jj, i.e. crD is only dependent on the inner viscosity. For 

R -► oo and Q -* 0,a* = ^fn(k*),k* is independent of Q and R, and <rD ~ ^. For R -* oo 

and Q -> 2,<r* ~ u^r^/«(**,<?).** = /»(<?), and <rD ~ ^. In all the asymptotic regimes, the 
dimensional wavenumber depends only on the inner viscosity. The relation between <r'R and R is 
shown in Fig. 9. For both R —* 0 and R —» oo, a*R asymptotes to a constant, confirming the fact 
that a* ~ 3j. For fixed values of R, the growth rate increases with increasing Q, i.e. more forcing 

produces faster growth rates. 
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The wavenumber ** is plotted against R in Fig. 10. Ä8Ä- 0, k' approaches a constant 
value independent of Q, confirming the asymptotics. In general, there are two competing factors 
involved in determining the wavelength of the perturbation. Increasing the wavelength causes fluid 
from further away to be pulled in. For stable density profiles, this would require a large forcing. 
However, decreasing the wavelength results in higher viscous forces. Thus, at fixed R, higher Q 
would cause more forcing and allow the wavelength to increase (and Jfe* to decrease). At fixed Q, 
increasing R would cause more viscous forces and make the wavelength of perturbation increase. 
Both of these properties are exhibited in Fig. 10. 
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Fig. 10: k* as a function of R for various Q. 

4    The Magma Case 

In the case of magma, the convenient symmetries of viscosities as above are not present, but the 
same density profile can be considered. A schematic of the four magma layers is presented in Fig. 
11. Since the upper layer is colder, it is much more viscous than the bottom layer (m » m). The 
viscosities in the middle layers can take on a large range of values, and both situations p3 > p, 
and H2 > M3 can be realized. This is still a rather complicated problem, and some simplifications 
can be made, in particular, m > M2, fi3 » ^. The top layer now is essentially rigid with respect 
to the underlying layers, while the bottom layer is relatively inviscid (but still satisfies Stokes flow). 
The simplified magma case is shown in Fig. 12. 

Times are non-dimensionalized with respect to jgfa and lengths are non-dimensionalized 
with respect to h. The density and viscosity ratios are defined as Q = 2*jil and R = ^. The 
four limiting cases of R — 0; Q - 0,Q -» 2 and R - oo; Q — 0,Q -» 2 are considered and 
represented in Fig. 13. As R -» 0, the third layer becomes relatively inviscid. The third layer 
no longer provides any resistance to motion, and no information about the deforming interface 
can propagate through to the lower interface. Therefore, regardless of the value of Q, the lower 
interface will not deform and only interfacial mixing will occur.   Since the third layer no longer 

166 



affects the motion, oD ~ /n(/*a) and becomes independent of /*j. 
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Fig. 11: A model for real magma. 
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Fig. 12: A simplified model for magma. 
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As £ —♦ oo the third layer becomes much more viscous than the top interface. However, there 
will be a difference in the behavior of the third interface depending on whether Q —► 0 or Q —+ 2. 
When Q —♦ 0, the density destabilization is much weaker than the density stabilization at the lower 
interface. The forcing will not be strong enough to cause the lower interface to move. Since the 
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second layer no longer affects the motion, aD ~ /n(/i3) and becomes independent of ß2- For the 
case Q -* 2, the density destabilization is twice as large as the density stabilisation at the lower 
interface, so the forcing will be capable of perturbing the bottom interface. Since the bottom layer 
is so much less viscous, it provides virtually no resistance to motion and will deform along with 
the middle interface. In fact, the third layer will just be buckling and the shear will be small. In 
the second layer, however, the fluid is much less viscous, but since it is moving with the third layer 
at the second interface while maintaining no-slip at the top, there will be high shear. Thus, the 
second layer is characterized by high shear and low viscosity while the third layer is characterized 
by low shear and high viscosity. Forces in both layers will be significant, and <rD should scale with 
both fj,3 and /*3) i.e. aD ~ /n(/i3,/i3). 
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R^ö 
{/// / f / / 

l/f££0VLS 
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///////// 

fY / f I / f 

Fig. 13: Limiting cases: R —» 0, oo; Q -* 0, 2 

A plot of i>2(-l)/rf)2(0), i.e. the ratio of the deformation of the bottom to the middle interface, 
is given in Fig. 14. As R -» 0, the deformation of the bottom interface does indeed go to zero 
regardless of the value of Q. At large R, the behavior changes as Q changes. For small Q, the 
lower interface barely moves, but at large Q, the ratio of streamfunctions approaces unity. This 
agrees with the limiting cases. 
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10000 

Fig. 14: ^a(—l)/^a(0) as a function of R for various Q. 

Wavenumber ib* is given as a function of R for various Q in Fig. 15. When R gets very large, 

siope -1/6 Jb* ~R~i. 
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Fig. 15: ib* as a lunction ot it 

10°      10' 

Fig. 16 shows the growth rate a* as a function of the viscosity ratio R. For each of the three 
regimes (Q < 1, Q = 1, Q > 1), a* ~ JP* for some n particular to each of the three regions. For 
Q < 1 (globally stable), <r* ~ R for large R. Note that in this case, <rD ~ -J-, which was expected 

from the limiting case R —* oo, Q —> 0. For Q = 1 (neutral), cr* ~ fi~» and for Q > 1.0 (globally 
unstable), a* ~ Ä~s. This suggests a more compicated scaling for erD when Q has magnitude 
unity or larger, which is consistent with the physical arguments given above for the limiting case 
R —► oo, Q —* 2. It is interesting to note that in Fig.  16, for Q just slightly less than or greater 
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than one, the graph of CT* vs R follows the graph for Q = 1 very closely until R -* oo. Therefore, 
for values of Q near 1.0, deviations from the neutral condition are not noticed until R —* oo. 

slopes -1;-2/3; -1/3 

£ 0.0001 re 

JC 

a 
05 

neutral 

viscosity   ratio 

Fig. 16: <r* vs. R for various values of Q. 

5    The Time-Dependent Problem 

Real magma has thickening layers due to the diffusion of heat, i.e. dL ~ y/H^i where db is the 
depth of each of the middle layers. The above constant layer thicknesses are modified to accomodate 
growing layers, and compositional diffusion is neglected. The streamfunction will now have the 
form 

At each time, 

i>(x,z,t)=:A(k,t)eik*fn(z). 

A(k) 
A(k) 

= <TD{kD,dh{t)) 

Note that aD and kD correspond to dimensional quantities. Integrating gives 

A(Mi) = A(k, 0)e/ol '»(»»AC«))* 

From the non-dimensionalization, 

fXApgdL <rD(k,dL) 
\     M2 

-)cr'(i) 

(6) 

(T) 

(8) 

(9) 
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-   (^) AW-) 
_    fXApgy/K^ 

V A»2 
) Vf/(JbDv/^4) 

(10) 

(11) 

A typical dispersion relation, /, is given in Fig. 17 As t increases, the argument of / increases 
as Vt, which is motion along the curve /(z) as shown in Fig. 17. Also, the actual magnitude of 
<rD goes as *Ji, so <rD increases with time. Fig. 18 shows roughly how the aD vs. kD curve varies 
with time. 

Fig. 17: A typical dispersion relation: f(x) = crD, x = kD. 

Fig. 18: <rD vs. kD with increasing time. 

With growing magma layers, the thickness of the fingers will depend on the wavenumber of 
maximum amplitude rather than the wavenumber of maximum growth rate a*. Just as a* changes 
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with time, Anar changes with time. Previous results showed that k(amax) = £-, and it can be 

shown mathematically that *(i4moi) = £, wh«e jfe = fn(Q, R), i.e. Jb is independent of time. This 
implies that, for each time t, the offset between k{omax) and i(J4m„) is constant (Fig. 19). 

Fig. 19 

The wavenumbers of maximum growth rate A* and maximum amplitude Jb are shown in Figs. 
20-22 for various Q's. For all three regimes of Q (globally stable, neutral, globally unstable), k and 
i* are very similar. Hence, Jb* is a good approximation for the scale of fingers. 
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Fig. 20: t* and Jb vs R; Q = 0.1 
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Fig. 21: A* and fc vs R; Q = 1.0 
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6    Scaling 

Fig. 22: it* and A vs R; Q = 2.0 

As a rough estimate, nonlinear fingers are expected to develop when 

A      d± 
A~ dL' 

(12) 
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i.e.   the rate of growth of the perturbation is of the same order as the rate of growth of the 
thickening layers. The layer depth dL ~ */i£i and d\ ~ y/^, so jfc ~ \. Furthermore, 

A XApgdL   , 
A H2 

so the critical time when the layers go unstable is 

J- rw    |  — 
[\Apga*y/K^ 

Since kD ~ ^-, the wavelength of perturbation is 

(13) 

(14) 

(15) 

and din, = y/itricrit- 

For a typical magma, rough estimates of viscosity are /*x « 1012kg/m-s, fi3 « 103-109Jbs/m-5, 
A*3 w 103 - 109kg/m • s, ^ « 103kg/m • a, also Ap « lOOty/m3 and K, « 10_6m2/*- To obtain 
the scaling for fingers, the asymptotic scalings determined numerically are applied. The extreme 
cases, A*2 = 103kg/m • a and /x2 = 109Aff/m • a give a range for if«, and din, (Fig. 23). 

lo3 w» 

P. |-lob 
l^-l 

c*) lo*-u* 10WV 

10   "l£> lo-3- ^ 
- 

Fig. 23: Time scale and length scale of fingers determined by asymtotics 

The timescale of instability is much less than the time the magma resides in the chamber 
(~ 10 -103 years), so there is certainly enough time for the instabilities to occur. A photo of mafic 
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inclusions (Fig. 24) shows "blobs" that have formed in the magma. The diameters of these blobs 
typically range from 0.1 to 20 cm, which is consistent with the results obtained from scaling. Blobs 
are formed rather than fingers, and Fig. 25 illustrates a possible mechanism for blob formation. 
At first, the middle layer is (a) perturbed a bit. The perturbation then (b) grows until it (c) starts 
being suppressed by the upper, highly viscous magma. Blobs start (d) pinching off and separating 
at which time the third layer in the original system has risen to meet the highly viscous layer. 
Diffusion causes (e) the formation of new middle layers and the process repeats itself. 

Fig. 24: Mafic inclusions ("blobs") 

• ••• 5 * . . 

~Ö6 
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Fig. 25: A possible mechanism for blob formation. 
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7    Conclusions 

Analysis fo the Rayleigh-Taylor instability for a typical volcanic magma suggests two regimes. 
In one regime, (realized when the density destabilization at the middle interface becomes small 
or when the second layer becomes highly viscous) the bottom interface hardly moves and only 
local mixing occurs at the middle interface. In the other regime (realised when the third layer is 
highly viscous and the density destabilization becomes very strong) the bottom interface moves 
as the middle interface and fingers can form. The scaling determined by this analysis agress quite 
well with geological data and suggests a possible mechanism for the formation of mafic inclusions 
("blobs"). 

The above analysis involves only linear stability theory, but some nonlinear analysis would be 
helpful. The linear stability should predict the scaling of the fingers within a reasonable degree of 
accuracy, but the nonlinear theory (perhaps using Boundary Integral Methods) could be used to 
determine the evolution of the fingers over time. 
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Semi-convection in stars 

Suzanne Talon 

August 23, 1996 

1    The general problem 

Stellar models may be built using simple considerations (see e.g. Kippenhahn & Weigert 

1994). We use the equations for the conservation of mass, energy and momentum, the last 
one being further simplified by considering hydrostatic balance, which is suitable for most 

cases encountered in stellar evolution. We then need to describe how heat is transported, and 

thus find if radiative conductivity can transport all the heat produced by nuclear burning 

alone, or if the temperature gradient required to carry all the energy to the surface is too 

large, thus leading to convection. 

In most cases, the answer to that question is rather straightforward and numerical models 

can be built. We will here concentrate our attention on a more complex situation called 

"semi-convection" in the astrophysical litterature. 

1.1    Thermal conductivity and chemical composition 

In the core of massive stars, the major source of opacity is electron scattering. The stellar 

material is completely ionized there and, assuming that the star is made only of helium (Y) 

and hydrogen (X) (which represent about 98% of the matter in a normal main sequence star), 

we can derive a formula that relates the thermal conductivity to the chemical composition: 
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That formula expresses the fact that, since helium contributes only 2 electrons for 4 mass 

units whereas hydrogen contributes 1 for 1 mass unit, helium is less opaque than hydrogen, 

and the thermal conductivity is higher when the helium mass fraction is higher. 

This gives rise to a very interesting process called semi-convection. If we neglect the 
dependance of the thermal conductivity on any parameter other than chemical composition, 

in the presence of a (linear) helium gradient, the temperature profile will be parabolic. 

However, if the helium is homogenized, the temperature profile will become linear, and the 

maximum value of the temperature gradient will be lowered. 

By adding a sufficient amount of helium, it is thus possible to stabilize an unstable 
temperature profile. 

1.2    Stellar models 

The first people to encounter that situation were Schwarzschild & Härm (1958), when they 
built a model for a 30M© star, with a growing convective core. The limit of the convective 

core is given by Vraa = V^d, where V = fj^jj. Since the pressure, temperature, luminosity 
and Vad are all continuous accross the boundary, the chemical discontinuity leads to the 

condition Vraa > V«d- However, as soon as convection would start in that region, the 

mixing of helium would stabilize it, thus impeding the convection. Their conclusion was 

thus that some process redistributes material outside the convective core until a state where 

Vrad = V.d (2) 

throughout the chemical gradient region is reached. They named that process "semi-convection". 

One year later, Sakashita & Hayashi (1959) published a paper where they proposed 

a similar solution to the problem, but argued that the proper criterion for the onset of 

overturning convection in the presence of a mean molecular weight gradient was not (2) but 
rather 

Vrad = V* + jlLj V„ = VL (3) 

as showed by Ledoux (1947), where VM = (dln/i/dlnP), p, is the mean molecular weight 

per particule (for a completely ionized mixture of helium and hydrogen, fi = \2 — jY) ), 

and ß is the ratio of gaz pressure to total pressure. That lead to quite different models. 

The other important contribution to the field has been made by Kato, in his 1966 paper 
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Hopf steady 

Figure 1: Schematic representation of the "neutrality" condition. 

where he describes the possibilty of double-diffusive overstability in the case where 

V.d < Vrad < VL. (4) 

That lead a few people to use overstability as a source of mixing. However, since in experi- 

ments overstability quickly turns into overturning convection, it is not clear whether or not 

that process is relevent. 

1.3    A new look at an old problem 

In other situations where the "diffusive" stratification of double-diffusion has been studied 

(see e.g. Veronis 1965), it has been found that the onset of steady convection is actually 

subcritical, leading to a finite amplitude instability. That is related to the fact that as the 

instability sets in, it destroys the stabilizing effect of the slowly diffusing component. 

If the sub-criticality is strong enough, the minimum Rayleigh number reached by the 

curve amplitude of the motions vs R? can be lower than that related to the onset of oversta- 

bility, and the "neutrality" condition of the material should be given by that ^n instead 

of ÄRB (or equivalently 2), iZ,te»dy (or equivalently 3) or J?HoPf (see Fig. 1). 

The goal of this project is thus to evaluate IL.™, which will provide an improved "neutral- 

ity" condition. One way to do so is via a weakly non-linear expansion, but this does not give 

a good approximation for highly nonlinear conditions. Instead, we will use an approximation 

that will allow us to not evaluate the high order terms. 
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As in the interesting approach of Proctor (1981), we need recognize that the semi- 

convective zone cannot be more unstable than a normal Rayleigh-Benard (RB) convective 

zone. In the diagrams amplitude vs RT (where RT is the thermal Rayleigh number that will 

be formally introduced later), this means that the curve describing steady convection in the 

presence of helium cannot cross that of RB convection. We will thus use the intersection of 

our curve, calculated only with the first term to appear in the expansion analysis with the 

RB curve, defining the point R^ as an approximation of &„;„ (see Fig. 1). 

The turning point of the real curve for steady convection (iZmin) could be evaluated 

more precisely by using a boundary layer method, as was done by Proctor for the case 

of thermohaline convection at very low Prandlt number. However, we feel that such an 

improvement is not essential to stellar structure theory, since it will only marginally affect 

the value of JL;^, and not change the physics of the problem. 

Note further that for this calculation to remain valid, turbulence must not be impor- 

tant in the semi-convective region. That is consitent with considering a permanent slow 

rearrangement of the chemical composition profile as the star evolves. 

2     The equations 

As a first step, we will model the semi-convective zone using a weakly non-Boussinesq approx- 

imation, where only the dependance of the thermal conductivity on chemical composition 
will be considered. 

2.1     Basic state 

In the basic state, the fluid is at rest, with a linear gradient of helium. The thermal con- 

ductivity KT is function of the chemical composition. Since the major source of opacity is 

electron scattering, the dependance on the helium abundance (if we neglect elements other 
than hydrogen and helium) is 

KT = K(2-Y)~
1 (5) 

where Y is the concentration of helium. We may write it 

KT   =   K(2-Yb-Vz')-1 (6) 
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Figure 2: Basic state and boundary conditions 

- 4+Ä) (8) 

where T? is the basic gradient of helium, 0 < z' < d is the vertical distance from the bottom, 
Yb is the concentration of helium at the base of the considered region, and «o is the thermal 
conductivity at the same location. 

Neglecting any nuclear energy generation and/or stellar contraction/expansion, the static 

temperature profile is given by 

V-(KVT)=0   or    *^ = V* (9) 

The background temperature gradient is then simply by 

f .% (1 + B.)    where   B = ^, (10) 

^? is the gradient at the base of the region and z is a normalized vertical coordinate. The 
temperature profile is thus parabolic. 

2.2    General equations 

As mentioned before, the equations are given in a weakly non-Boussinesq approximation. 

The equations for the conservation of momentum 

i [ftVV + J (V>, VV)] = -RT0* - ^rv* + VV (11) 

and for the conservation of helium 

-[ftlf + J(*,y)] = -tf. + V2y (12) 
T 
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are just the double-diffusive equations encountered in the Boussinesq approximation. Here, J 

is the Jacobian operator defined by J(a, b) = dxa dzb — dza dxb and ip is the streamfunction 

and is related to the fluid velocity u = (—ipz,0,ipx). a = V/KQ is the Prandtl number, 

T = KY/K0 is the Lewis number, RT = gaAT(P/vK0 is the thermal Rayleigh number, 

RY = gßAYtP/uno is the helium Rayleigh number, the units are K0/d for velocity, CP/K0 for 

time, AT for the temperature fluctuations 8 and TAY for the helium fluctuations y. Note 

that in the context of stellar structure a and r have values of about 10-8. However, we will 

begin by considering the problem with a, r ~ 0(1), and only after will we study the a, 

T —» 0 limit. 

The equation of heat is slightly modified and becomes 

dt8 + J (V>, 8) = -V>x (1 + Bz) + V20 - B8Z - -Byz (13) 

The boundary conditions are stress-free (for the velocity field) and fixed temperature 

and helium concentration (TJ) = rpzz — 8 = y = 0 at z = 0,1). It is important to note 

that these boundary conditions are uncertain. It is not clear how the semi-convective zone 

will be affected by the adjacent convective/radiative zones. The influence of the boundary 
conditions on the final result (neutrality criterion) would be interesting to pursue. 

One of the new features of this set of equations is that thay are coupled even for the case 
RY = 0. Note however that if AY = 0 we must redefine B. 

Another important characteristic of the heat equation is that it involves a "Dufour-like" 

effect, since adding some helium perturbation will help carry heat. However, the form of the 
equation is somewhat different than for the normal so-called Dufour effect. 

3    The linear problem 

As mentionned in the introduction, we will perform a weakly non-linear analysis on this set 

of equations. The first step is to solve the linear problem. We expand the function in terms 
of the small parameter e. 

tf = = £ 

/ v(l) \ 
«™  + 

v y{1)) 

( ¥2) \ 

V y{2)) 
+ £J 

( V»(3) \ 
0(3> 

V *(3) J 
+ (14) 
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We will also expand the thermal Rayleigh number 

RT = RTO + e-Rn + £2
RT2 + - (15) 

At 0(e), we have simply 

V4 - i&V2 -RT0dx        -\RYOBX 
> 

-(1 + Bz)dx   V
2-Bdz-dt     -\Bdz 

-dx 0 V2 - \dt ) 

(16) 

which is the linear expansion problem.   This equation is non-linear and must be solved 
numerically, or via a perturbation method. 

3.1    Perturbation of the linear problem 

We expand the linear equations with respect to the small parameter B. 

$W = 0O + B6i + ... 

y(1) = yo + Byi + ... 

RT = RTO + BRTI + ••• 

Ry — Ryo + BRyi + ••• 

s = s0 + Bsx + ... 

k = ^ + 5^ + ... 

The temporal dependance is assumed of the form est. The Laplacian and biharmonic oper- 

ators become 

V2   -+   (kl + dl)+2B(k0k1) + ... 

V4   ^   (k2
0 + dl)2 + AB (k3

0 + kodx) h + 

3.1.1    Ö(B°) 

At this order, we recover the same equations as in the well-known linear thermohaline prob- 

lem. 1 

±3oVVo = -ÄTO0OX - -RYOVO. + VVo (17) 
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s06o = -0ox + V20o 

1 , r-,2 SQVO = -ipQx + V y0 

(18) 

(19) 

The z-dependance can be expressed as sm(nirz). Expanding the s-dependance in exkx leads 
to 

'  ,4 + *y      _ikRT0 -ik^Ryo    \( Vo \ 

-ik       - (p2 + s0) 0 0o      = 0 (20) 

-ik 0 - (p2 + Jao) / U° / 

where p2 = n2ir2 + k2 and which we may write in condensed form £\P0 = 0. The dispersion 
relation is 

V 

(p4 + f P2) (P
2
 + *o) (p2 + ^o) - k2RT0 (p

2 + i JO) - y Äyo (P2
 + 5o) = 0.      (21) 

The onset of direct convection (s = 0) is governed by 

p6 = Jb2 (äTO + ^p) (22) 

and the wave number of the most unstable mode is ko = ir/y/2 which becomes unstable 
when R = (RT0 + RYO/T) = Re = 27TT

4
/4. The solution is then just 

V>o = Ae**°x sin(7rz) + c.c. 

8Q = --yAe^'fsmirz) + c.c. 
Po 

yo = ^-AeikoX(s\n-Kz) + c.c. 
Po 

(23) 

(24) 

(25) 

3.1.2    0{BX) 

At 0(B1), the equations become 

—•soPoV'i - RroikoOi Ryoikoyi + pfyi = 
<J T 

(26) 

 siPoV'o sofcifcoV'o + Rriikoöo + ÄxoiMo + -Ryiihyo + -Ryoihyo - 4pofcofciV>o a a T T 

- s0e1 - zfcoVi - Po^i = Mo + zifcoVo + t*i^b + 2&üMO + öoz + -yo* (27) 
T 
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 soVi - ik)il>i - plvi = -Wo + ihfo + 2fcoAiy0 (28) 
r r 

We will look for modifications at the onset of convection (a0 = si = 0). In matrix form, the 

problem is then 

/ RT1iko60 + Rroihdo + ^Ryiikoyo + iRyoihyo - ^plkoh^o 
£*i = 

V 
zikoipo + ikii>0 4- 2koki60 + 60z + \yoz 

ifciV'o + 2&ofcij/o 

(29) 

We must now eleminate resonant terms on the rhs of eq. (29). We will thus define the 
adjoint eigenvector & and adjoint operator £f such that (**,£$} = («,£*«*), where the 

brackets are used for the inner product (a, 6) = /0 dz /0* dx ab. The adjoint problem is 

V4       dx    dx \ 
£t*t = |    RTOdx    V

2    0 
\RY0dx    0    V2 ) 

= 0, (30) 

with the boundary conditions ^} = ^ = flf = j|f = 0 at z = 0,1.   We have the same 
dispersion relation as before and the solution is just 

0T = =—e^  sm(7rz) + c.c. 
Po 

y> = —e      sin(Trz) + c.c. 
To 

(31) 

(32) 

(33) 

We can now compute the solvability condition (\&t,rhs) = 0 

i — 
f dz f" e2*°xdx sin2(ir2) 

JO        Jo Po        ^   Po Po r     p% 

—zsin2(irz) 
Jfe2 

p    Ko 

PoJ 
+ -7T sin(7rz) cos(7rz) fc2     -Ryo&o 

Po        T   Po 

(34) 

=   0 

Using R = RT + ^, remembering that £o = j| and calculating the integrals 

/  sin(-7rz) cos(7rz)dz = 0   ;   J sin2(irz)dz = -   ;   J   2sin2(7rz)dz = - (35) 
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Figure 3: Vertical first order eigenfunctions for the case where B = 0 (full line) and B = 0.1 

(ticked line), calculated with RY = —200, a = 0.2, r = 0.2, k = ko. Note that in the case 

B = 0, these eigenfunctions are simply sin(7rz). 

we find that the modification of the wave and Rayleigh numbers at onset are related by 

*, = 
2Ro ko/pl 

(36) 

Note that this calculations is limited by the condition B «C r, a, 1. This tells us that the 

wave number of the most unstable mode will change. However, that analysis does not tell 

us what that wave number becomes, since we have only a linear relationship between RTI 

and k\. Eq. (36) may also be used to find the change of the critical Rayleigh number for a 

fixed wave number. 

3.2    Numerical results 

As already mentioned, the differences between the standard thermohaline equations and 

equations (11), (12) and (13) are all located in the heat equation and preceeded by the 
parameter B. It is also worth noticing that the most important term in that equation is 
the one in yz since it is preceeded by 1/r, which is small in our case. We expect that the 

symmetry breaking introduced in the eigenfunctions will be most important for the heat 

equation, as is illustrated in fig. 3. 

Numerically, we can also calculate the marginality curve (that is the Rayleigh number 

for zero-growth rate vs k), and see how it is modified by including the B terms. That is 

illustrated in fig. 4. The comparison between that figure and the perturbation analysis is 

not straightforward since in the numerical calculation B ~ 0(T, a). However, it shows that 
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Figure 4: Marginality curve for B = 0 (solid line) and B = 0.1 (ticked kine). 

even in that regime, the wavenumber of the most unstable mode doesn't change much. We 

will thus keep fc = fco for future calculations. 

4    Weakly non-linear analysis 

We will concentrate our attention on the onset of direct convection and thus eliminate all 
«fast» time derivatives, present in the first and second order equations. We solve the linear 

Pr°blem ' V< -JWt    -\Rrodx\(^\ 
M&x) =     -(1 + Bz)dx   V

2 - Bdz     -\Bdz 

-&, 0 V2 
/ 

(37) 

and then adjoint problem 

V4       (1 + Bz)dx   dx \ 
A*t*t = |    Rrodx     V

2 + Bdz     0 
\Rrodx       \Bdz       V

2 

= 0 (38) 

numerically, using the same boundary conditions as before (stress-free, fixed temperature 
and helium concentration). For the solutions, we will use the notation 

f) = A(T2)cos(k)^(Z)   ;   öW = A(r2)sin(fcx)ö1(z)   ;   y« = A{T2) sin(fcx) yi{z) 
(39) 

^ = cos{kx)^(z)  ;   (ft = sin(fcx) d\z)  ;   y» = sin(fcx) y\z) (40) 
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A (T2) is used here to denote the fact that we allow the amplitude to change on a slow time 
T2 of order e2. The eigenfunctions in z come from the linear problem (see fig. 3). 

4.1     0{e2) 

The second order problem is 

/ 

M¥V = 
iJ(lfl\V*lPi)+Rn8mgM \ 

jtyweu) (41) 

which may be written also 

w T r«     (      - *A*Sin(2kx) M('>M*) ~ #Wi(*)] + RTIA k cos(kx)e1(z) \ 
M*n=\    -j}A> [M*W(*) + 1>[(z)9i{z)\ + \A2 cOS(2*x) WWW - #(*)«i(*)] 

\ -TrA% WiWM + 4>i(z)yi(z)] + ±A2 cos(2fcx) [<Px{z)y'1{z) - i>i(z)yi(z)} } 

(42) 
using the known x dependance and where the ' denotes a derivative with respect to z In 
the standard thermohaline case, J (^>, W(1)) = 0. The symetry breaking introduced in 
the equations destroys that simple relation. It also introduces the term in cos(2Jbx) in the 
heat and helium equations. Writing the solvability condition (*t>rhs\ = 0 and integrating 
over x, we are left with ' 

I dz RTX i>\z)0{z) = 0. (43) 
This implies simply RTl = 0. The second order solution will have the form 

/ A2(T2)i,2(z)Sm(2kx) \ 
*(2) =      A2(T2) e2a{z) + A2(T2) e2b(z) cos(2ibx)     . (44) 

V A2(T2) y2a(z) + A2{T2) y2b(z) cos{2kx) ) 

The system of equations at this order is then 

V^sin^x) - 8*a<sin(2*x) + 16* Va sin(2*s) + 2kRTo62bSm(2kx) 
2k k 

+—RYoy2bsin(2kx) = — sin(2*x) [^'V - j>'"i>] 

-2*(1 + Bzfa cos(2*x) + el + B'2\ cos(2*x) - U2e2b cos(2*x) - B9'2a - BB'2b cos(2*x) 
1,1 ]f. L 

--BV2a ~ -By2b cos(2*x) = -- tyff + tfO] + - COs(2*x) [W - ^'6} 

-2fy2 cos(2*x) + y£ + y%bcos(2kx) - Ak2y2b cos(2Jbx) = 
k k 

—^ W + Ml + — cos(2A:x) tyy' - j'y] 
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Figure 5: Vertical second order eigenfunctions for the case where B = 0 (full line) and 
B = 0.1 (ticked line), calculated with RY = -200, a = 0.2, r = 0.2, for k = fcf>. The 
asymmetry is again stronger in the temperature field. Furthermore, some Jacobians which 
were null in the standard case now have a finite value, giving rise to a more complex second 
order solution when B ^ 0. 

That system is solved numerically for ^{z), 02a(z), hb{z), V2a(z) and y2b(z). 

4.2    G(e3) 

We may now write the third order problem. 

/ I [j (f),vVJ)) + J (^W, V2V>(1))] + RT2d,0U + jSr,VV(1) N 

MVW = 

V I [J (^W.yW) + J (^«.yW)] + JftilfW 

(45) 
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or 

M¥3) = 

( %A3 sin2(kx) cos(kx) [4>'2tf - ^«' - ^'Vi + Wi + 3*2 (V^i - ^2)] 
+fA3 cos3{kx) [1wK' ~ WS + 3*V2#] + ART2k cos{kx)91 + \AT^ cos(kx) (#' - JfcVi 

-kA3 sin(kx) [frO^ + W2h - 26'M 
+kA3 sxn(kx) cos2(kx) [-2^x0'2b + ty'xhb + ^Wx - 2^20i] + AT2&X sin(kx) 

-M3 sin(Ä:x) [ipxyL + M» ~ WM 
\ +±A3 sin(kx) cos2(kx) [-2V>iy26 + Wifa + ^M. - tyfa] + \ATiy\ sin(fcx) 

(46) 
The solvability condition at this order will tell us is the bifurcation is sub- or supercritical. 
Integrating over x, we get 

£ dz ^tl [2 tyw _ w? - Wh+$$«+zk2 (^Vi - VM)+6 (v>2#" - w2'+3*v;)] 

+Ö* {-21>xe'2b + 4#0» + ty20[ - 2TP'26X - 4 (V>i*2a + i>xO'2b - 26'M] 

+_yt [_2^xi/26 + 4#0» + 4ip2yi - 2^2/1 - 4 (V^2o + V-12/26 - 2^^)] 
T 

+±^exRT2 + ^ [ V (< - *Vi) + 9% + ±y*yx] = 0 

Peforming the integration we will be able to write an amplitude equation of the form 

aAT7=ßRT2A + 'yA\A\2. (47) 

In all computed cases, 7 was found to be positive, indicating a subcritical bifurcation. In 
fig. 6, we have the amplitude vs RT diagram for Rayleigh-Benard convection, the standard 
thermohaline case (B = 0) and two values of B (0.01 and 0.1). For these parameters, we see 
that RRB is a very good approximation of R^™. 

5    The v -»- 0, KY -+ 0 limit 

In stars, we are in the limit where both v and Ky are very small. To study that limit 
properly, we will use a new scaling for the variables [u ~ v/d, t ~ d2/v, T ~ K^v/gad3, 
Y ~ Kxvjgßd3). We will also introduce a new non-dimensionnal number, the Schmidt 
number a = vJKy. There is some uncertainty as to the real value of that parameter in stars, 
then however, it is reasonable to assume CT ~ 0(1). We will have to change the notation for 
the Prandtl number, now V. 

ft VV + J (V', vV) = -6x -y* + VV (48) 

190 



600 800 1000   1200   1400   1600 

Figure 6: Amplitude vs RT diagram showing the neutrality condition for the case with B = 0 
(short dashed line) and B = 0.1 (long dashed line). For that calculation, we used r = 0.2, 
a = 0.2, RY = -200 and k = ÄQ. The full line is the classical Rayleigh-Benard problem. 

dte + Jfaß) = -RT (1 + Bz)j>x + - V20 - B0Z - ^Byz 
Ry 

dty + J (V-, y) = -iM>* + - V2y 

(49) 

(50) 

This limit corresponds effectively to study the case of infinite thermal conductivity. From 
equation (49), we see that we can drop the time derivative, as well as the advection term in 
the heat equation. The heat profile is thus slaved to the behavior of the velocity and helium 

fields. 

In the case with B = 0, we can use sin(n7rz) for the z-dependance of the eigenfunctions, 
and in particular, we can thus calculate the dispersion relation 

s2 (pV) + s (p6(l + a) - k2VaRT) + ps - k2p2 (VRT + <TRY) = 0 (51) 

We can thus show that overstability still exists provided that 

<JRY < k2 

The value of the thermal Rayleigh number corresponding to zero-growth rate is then 

VRr = ^l. 
Arcr 

Note that the relevant parameters of the problem are now VRT and aRy. 

(52) 

(53) 
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Figure 7: Vertical first order eigenfunctions for the case where B = 0 (full line) and B = 0.1 
(ticked line), calculated with RY = -1000, a - 1, V = 10-6, A: = Jfeo- 

5.1    Weakly non-linear analysis 

As previously, we will concentrate ourselves on the onset of direct convection.  The linear 
problem is very similar to what it was before 

V4 -dx -dx     \ 
jVtfW = |   -VRT(1 + Bz)dx   V

2 - Bdz   -%$Bdz 

-oRYdx 0 V2 
(54) 

whose adjoint problem is just 

( V4   VRT(1 + Bz)dx   <jRYdx \ 
dx        V

2 + Bdz 0 

V9*      tBd*        v2  / 
tf*   1=0 (55) 

These problems are solved numerically, using the same boundary conditions (stress free, 
fixed temperature and helium concentration), and notations as previously. 

5.1.1    0{J) 

The second order problem is 

^(2) 0 (56) 
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which may be written also 

/ ±A*sm{2kx)mz)K{z)-M'{z)Mz)] \ 
MVM= 0 , (57) 

using the known x dependance. Once more, the solvability condition leaves us with RT\ = 0. 
The second order solution will have the same form as before 

/ A2(T2) ij>2(z) sm(2kx) \ 
VW =     A2(T2) e^iz) + A\T2) e2b{z) cos(2*x)     . (58) 

V A2(T2) y2a(z) + A2(T2) y2b(z) cos(2kx) ) 

The system of equations is then 

V>r sin(2Jfex) - 8k2M sin(2ifcx) + 16kAj>2 sin(2fcx) + 2k62b sin(2fcx) 

+2ky2b sin^fcx) = ^ sin(2fcx) [MM ~ M'M] 

-2kVRT0(l + Bz)^2 cos(2Jfcx) + B'^ + 8'2'b cos(2fcx) - 4fc2026cos(2*x) - B9'2a - B6'2b cos(2A:x) 

-^By'2a-^By'2bcos(2kx) = 0 
KYO -Kyo 

-2kaRYoj>2 cos(2fcx) + y'^ + y2b cos(2fcx) - 4k2y2b cos(2fcx) = 

5.1.2    0(e3) 

The third order problem is now 

/ J (^(1), VV(2)) + J (V»(2), v2v>(1)) + dr2v
2v>(1) 

J (V>(1),*(1)) + dr39W + RT,[P(1 + Bz)dxM
1) + T^-0dzyU] 

aJ (V>(1),2(2)) + aJ (M2),yW) + °dT2y
W 

tfyW = 

\ J 
or 

JV*<3> = 

(59) 

/ 2kA3 sin2(Jbx) cos(Jbx) [MM ~ MT - M2"M + MM + 3fc2 {M2M - VM 
+2JbA3 cos3(fcx) [&#" - MM + Z&M'x] + AK (M ~ k*M) cos(fcx) 

-f A3 (V>i*i + VW + § A3 cos(2fcx) (^ - MA) + 4r2*i sin(*x) 
-[P(l - Bz)Ak sin(Jbx)V>i + j^A sm.{kx)y'1]RT, 

-akA3 sin(fcx) [MvL + My» - 2y'M 
K +akA3 sin(Jbx) cos2(A:x) [-2^xy'2b + ty'ihb + 4^2yJ - 2V>23/i] + crAT2yi sin(fcx) ^ 

(60) 
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Figure 8: Amplitude vs RT diagram showing the neutrality condition for the case with B = 0 

(short dashed line) and B = V (long dashed line). For that calculation, we used V — 10~6, 

a = 1, RY = -1000 and Jb = jfco- 

We now just have to compute the solvability condition to get an amplitude equation 
similar to eq. (47). 

This new scaling relevant to the stellar case also leads to a subcritical bifurcation. Figure 8 
shows the neutrality condition obtained using a new set of parameters, more appropriate for 

a stellar case. 

6    Perspectives 

This project demonstrated that in the regime relevant to stellar structure, the onset of steady 

convection is sub-critical. Furthermore, it is quite likely that the minimum Rayleigh number 

for the onset of a finite amplitude instability is smaller than what is required for the onset 
of overstability. 

The last step would now be to complete that analysis for compressible stellar matter and 

realistic values of B, Ry and Äy. We also need to "translate" the approximate R^™ into 

temperature and helium gradients that will result in the stellar model. In particular, a new 

scaling might be required in the case where B ;» V. 
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Aspects of Double Diffusion in a Thin Slot 

Joseph A. Biello 

August 24,1996 

1    Introduction 

A fluid with stable salt stratification, when heated from below forms convective 

layers from the instability of a vertically advancing thermal boundary layer (Huppert 

& Linden [1]) Veronis [3] found analytically that such a system goes unstable through 

overstable oscillations. The primary instability of such a system is difficult to observe 

experimentally (see Shirtcliffe [2]) but is important in determining the subsequent 

evolution of the fluid. This paper considers five aspects of the instability of such 

a stably stratified system in the presence of a background constant temperature 
gradient. 

If one could have an actual constant background temperature gradient in the fluid 

and slowly increase this gradient it may by possible to see the onset of overstability. 

We describe, in Section 2, an experiment which was conceived for this purpose. The 

outcome does not seem to show this overstability, but rather a primary instability 

to convection driven by horizontal temperature differences. A brief description of 

the subsequent non-linear evolution of the system is provided. 

In section 3 we discuss the linear theory for onset of instability in a tall, thin 

geometry. We show that the instability can set in at zero vertical wavenumber in 

parameter regimes where the density is stably stratified. 

Sections 4, 5 and 6 extend the linear theory to the weakly non-linear regime. 
In each section we derive amplitude equations for the zero wavenumber oscillatory 

eigenfunctions which arise for different sets of boundary conditions.  The equation 
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of section 4 has a subcritical bifurcation while the modified system of section 5 can 

be supercritical. The secondary instability of this latter system is touched upon. 

We also derive the dispersion relation that arises for the secondary instability of the 

amplitude equation of section 6 and show that is displays an Eckhaus instability. 

We conclude with a description of our future plans for this research. 

2    The Experiment 

2.1    Set Up 

The apparatus consists of a tank 80cm high (z), 80cm across (y) and 1.2cm back to 

front (x). The front wall is 1cm of perspex while the back wall is a 1cm aluminum 

plate. Behind the top of the plate, running the breadth of the tank is attached a 

cooling bath; similarly there is a heating bath at the bottom. We use the standard 

double bucket technique to fill the tank with a constant salt-water concentration 

gradient (saltier on the bottom). 

The thermal diffusion time across the slot is of order 1 minute and changes to the 

background temperature profile were made on times considered slow with respect 

to this. (Ap/p)sait = !-5 x 10~3 across tne height of the tank so AT,«« = 6.2°C 
would destabilize the density. We increased the temperature gradient about room 

temperature at the center of the plate. The rate was less than q=0.5°C per hour 
at the top and bottom bath, respectively. Thermal diffusion in the z-direction for 

aluminum is comparable to the 1 minute diffusion time given above. The velocity 

field was visualized by using dissolved fish flakes and the salt water was dyed. The 

salt Rayleigh number started at 1900 while the thermal Rayleigh number was turned 

up to 1750. 

2.2    Early Behavior 

An early time snapshot is shown in Figure 1. Note primarily the long straight rolls 

in the top part of the tank which form from the top and bottom boundaries and 

continue forming towards the midline as the temperature is turned up. The velocity 
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Figure 1: Early Time Photo of the experiment 

field of the rolls is entirely in the x-z plane and shows no y dependence save for some 
boundary effects. 

It seems that, as the temperature gradient is turned up, the primary instability sets in 

due to a temperature difference between the front and back walls. The hypothesis is that in 

the top half of the apparatus, the rear wall temperature is colder than the front (which is 

apparently at room temperature) and the fluid begins to fall. This falling is halted by the 

density contrast in the salt field and gives rise to the rolls. The same process takes place in 
the bottom half of the tank, but with fluid rising along the back wall. 

At the time of this snapshot (Figure 1), the rolls in the top half rolls are becoming 

unstable to a vertical zig-zag along their axis. After a longer time this zig-zag undergoes a 

transition to slow rolls in the y-z plane as is seen at the bottom of the tank, at which point 

the velocity field shows no x-dependence. 
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Figure 2: Late Time Photo of the Experiment 

2.3       Late Time Behavior 

In Figure 2, the fluid velocity is entirely y-z Hele-Shaw-like. What began as regular rolls has 

now become turbulent thermal convection in layers. The salt concentration of these 

layers is relatively constant, since the convection keeps them mixed, and increases toward 

the bottom of the tank. The shear at the layer interfaces slowly decreases the salt contrast 

between layers. Convective blobs impinging upon the interfaces from above and below 

excite waves of ever-increasing amplitude as the salt proves a less effective barrier. After 

these interfacial waves start breaking, it then takes a short time for two layers to merge. 

Layer merging proceeds until there are just two remaining, dividing the tank in half. At this 

point the interfacial waves are quite large and dramatic and the last interface quickly breaks 

up. The salt becomes well mixed and highly turbulent thermal convection proceeds unim- 

peded throughout the tank. 
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3    Linear Theory 

3.1    The Equations 

Consider the Boussinesq approximation for a fluid with a background linear profile 
of salt and temperature: in this paper we will be concerned with the diffusive strat- 
ification, that is to say, hotter and saltier below. The non-dimensional form of the 
momentum, heat and salt equations are, respectively, 

-dt - V2 

a 
j(V>,v2V0 

V2V> + RT0X - RsZx = -^—- (1) 

[dt-V2] 6 + 4,x = J(j,,8) (2) 

dt-rV2] E + ^« = J(^,E) (3) 

Where: 

a = (*..o,-W W 

* = C™ (5) 
VKT 

Rs - ***. (6) 
VKT 

A and V, defined as positive, are the background vertical gradients of salt and 
heat, — ß and a are their respective coefficients of expansion, a = U/KT is the 
Prandtl number, r = KS/KT is the Lewis number and d is the thickness of the 
slot in the x direction. The temperature and salt equations are written for the 
perturbations of these fields from their linear background. 

In an effort to explain the onset of instability seen in the experiment, the con- 
figuration we consider is one in which the vertical dimension is much greater than 
the horizontal. However, we emphasize that our analysis is not directly applicable 
to the experiment since we completely disregard effects of a temperature gradient 
in the thin direction as the back plate temperature is turned up. 
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3.2    Boundary Conditions 

In this and the following section we will consider boundary conditions most appro- 
priate to the experiment. On the front and back walls no slip on the velocity field, 
,(, = ij;x = 0 and no flux of salt S* = 0. The temperature is strongly forced by the 
aluminum plate on the back wall so 0 = 0 on x - 0, and no heat flux through the 
front, so 6X = 0 on x = 1. These boundary conditions are used for the linear prob- 
lem and will be changed for the derivation of the amplitude equations in subsequent 

sections. 

3.3    The problem 

Assuming all fields proportional to e*** and no dependance on y, the linear problem 

becomes 

where 

V 

(}ft + k>- dxx) (dl - fc2) RTdx -Rsdx 

Lk= dx (dt + k'-dl) 0 
dx 0 (dt + rk2-rd2

xx)} 

We will be considering fixed T = 10-2 and a = 7 in all that follows. 

(7) 

(8) 

(9) 

3.3.1    Stationary Bifurcation 

Setting dt = 0 in equation (9) and fixing all other parameters gives an eigenvalue 
problem for RT- At Jfc = 0 it is straightforward to solve analytically and yields 

RT = RTc = — + a4 (10) 

where 
cos (a) cosh (a) = 1 

gives a implicitly. The first root of this equation corresponds to the lowest mode 
eigenfunction. 
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Figure 3: Critical RT and u versus vertical wavenumber for Rs = 30000. 

For non-zero vertical wavenumber, solutions are obtained numerically using a 

Newton-Raphson routine (NRK). The zero-wavenumber mode has the lowest critical 
thermal Rayleigh number. It is important to note that the stationary bifurcation 

occurs when density is very unstably stratified for small T {r = 10-2 for heat/salt). 

3.3.2    Oscillatory Bifurcation 

Now search for purely oscillatory modes in (9) dt = iu: we once again resort to 

the NRK routine to get the marginal curves and eigenfunctions. Figure 3 shows 

that the instability sets in at k = 0 for a stably stratified density distribution when 

Rs = 30000. In particular, the frequency of the oscillatory instability remains finite 

as the vertical wavenumber goes to zero. The real part of the marginal eigenfunction 
is shown in Figure 4. 

For comparison, marginal curves are plotted for Rs of 8000 and 80000 in figure 
5. In the case of the weaker salt stratification instability sets in at zero wavenumber 

but at unstable densities. For the greater salt stratification instability sets in at 
stable densities but at a finite wavenumber. 
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Figure 4: Stream, temperature and salt eigenfunctions at k = 0 for Rs = 30000 

-i 1 ! i 1 1 r~ 

Figure 5: Marginal Curves for Rs = 8000 and 80000 
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4     Amplitude Equations for Mixed Temperature 
and Fixed Salt Flux Boundary Conditions 

4.1     Derivation 

4.1.1    Scalings 

The zero wavenumber instability with non-zero frequency seen in the linear problem 
motivates a long wave expansion for the thermohaline equations (1) - (3). If we scale 

z —► ez 

dt — dt + e2dr 

and recognize that the quadratic form of the marginality curve allows 

RT = RQ -f e R2 + e R4, 

our system can be written formally as 

L0V + e2L,W + e4LA¥ = eiV, (V>, ¥) + e3N3 (^, V). (11) 

Where, 

"(WL - 2^, + ±drdlx)        R2dx 0        I 
0 (dr-dl) 0 (12) 
0 0 (dr-rdl). 

\ldr-dlz)dlz    R4dx   01 
Lt= 0 0      0. (13) 

0 0       0 

La = 

( r^xxi 
N,y,,*) = j 4>, e 

V [ s J 
(14) 

L0}P is defined as in equation (9) with k = 0 and iV3 is defined similar to Nx with 
i>xx replaced by ipzz. 

For the mixed temperature, fixed salt flux and the fixed heat and salt flux am- 
plitude equations (considered in the following section) it is natural to begin the 
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expansion of our fields at O (e) in order to allow the second order linear operator to 

enter at the same order as the first order non-linear operator. The expansion of our 

variables now allows the odd powers to decouple from the even ones so we can take: 

& = €&! + e3*, + (15) 

4.1.2    O(e) 

At first order equation (11) becomes 

£o#x = 0 (16) 

which is just the linear problem of the previous section evaluated at k = 0. There 

are two marginal eigenvectors in this problem, 4?° which denotes the eigenvectors 

of the previous section with eigenvalues w and *$ which has zero eigenvalue, 

6 _ *5 = (17) 

This latter solution arises due to the no flux boundary conditions of salt on the side 

walls and it represents the redistribution of the mean salt field by the flow [4]. So, 

the general solution at this order is 

*! = A (z, T) fcje*" + A* (z, T) *»*e"** + B (z, T) 4f\ 

where an asterisk denotes complex conjugate. 

(18) 

The adjoint problem is obtained by multiplying by the adjoint eigenvector and 

integrating over x by parts. Let a dagger denote the adjoint vector, then it is a 

straightforward exercise to show that 91 =^/\ and 

* at (19) 

4.1.3    0(e3) - The Amplitude Equations 

(20) 
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In this equation the inhomogeneous terms can resonate with the linear operator. To 

solve the equation at this order we must therefore impose the solvability conditions: 

<*? ,RHS) = {4f\\RHS) = 0 

the inner product denoting integration over x = 0,1.   The solvability conditions 
translate into equations for the amplitudes, A and B, we find 

AT = yAzz + ßABz + 7 A 

BT = T[BZZ-CL\A\
2
]. 

(21) 

(22) 

B and a are real while A, i\ and ß are, in general, complex since at onset of instability 
for k = 0 there is a non-zero oscillation frequency, r is still the Lewis number. The 
coefficients are defined as follows, 

V   =   - yo  [2 |V>ix|  +Ro01   - TRS |S! 

ß   =   — TIT |S1X|2 + iu \±! 2] dx 
T    JO    I    I I I 

f1 I *      I2 

a   —   2 /    Six   dx 
Jo  '      ' 

dx + 
iu>   f 

ra Jo 
i   cfx 

(23) 

7   =   -R2 

-i: \0\x\ dx 

4.2    A Steady Solution 

Steady solutions of (21) and (22) are obtained by setting time derivatives to zero. 
So 

Bz = a \A\2 

and 
0 = vAzz + aß A \A\2 + 7A (24) 

If, for a moment, we take rj and ß to be real and consider periodic solutions, A = 
i2e**z, we can disregard boundary conditions for (24). R is given implicitly by 

7 = Vrk
2 - aßrR

2 (25) 

Since the real parts of 77 and ß are positive, curves of constant R in (25) are parabolas 
intersecting the negative 7-axis in the 7VS.Ä: plane. Therefore solutions of this form 
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exist only for negative 7 and we have a subcritical bifurcation. In physical terms, 
the oscillatory mode is advecting so much of the background salt field as to destroy 
its ability to stabilize the system. This oscillation is then unstable; the well mixed 
salt will now have Rs = 0 and thermal convection will ensue. 

5    Amplitude Equations for Fixed Heat and Salt 
Fluxes at the Boundaries 

5.1    Derivation 

The redistribution of the mean salt field by the flow is the mechanism for subcriti- 
cality in eq. (25) so, in order to saturate the instability, the mean temperature field 
must be allowed to redistribute itself at the same order. Changing the temperature 
boundary conditions to no flux on both walls (9X = 0) allows another marginally 
stable eigenfunction at first order, the temperature mode, 

¥£ = (26) 

It was analytically verified that the zero wavenumber instability still occurs for these 
boundary conditions in a parameter range where the density is stably stratified 
(RTC < Rs)> allowing us to use the same asymptotic expansion as before. 

Now the general first order solution becomes 

^ = A (z, T) «Je** + A* (z, T) %?e** + B (z, T) 4>\ + C (z, T) *{        (27) 

Once again we proceed to third order and project the inhomogeneous terms onto 
the, now three, first order marginal eigenfunctions. This yields evolution equations 

for the A, B and C modes 

AT = vAzz + ßABz - SACZ + jA (28) 

BT = r[Bzz-a\A\2
z\ (29) 

CT = Czz-i \A\l (30) 
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where, 

Uli   f11 *   2 
£   =   Ro + —      Wi   dx (31) 

f = 2/ 
JO 

I,.   ,2 
öix   dx 

All coefficients are defined such that their real parts are manifestly positive. 
They are defined in the same manner as before but are now solutions to a different 
linear problem since the boundary conditions have been changed. 

Only the derivatives of B and C enter in (28) so we can rewrite our system, 
defining B = Bz and C = Cz, as 

AT - f\Azz + ßAB - SAC + >yA (32) 

BT = T[B-OL\A\
2

]ZZ (33) 

CT=\C-i\A\2] (34) 

5.2    Steady Solutions 

Seek solutions of equations (32)-(34) of the form 

A = R^kz+nT\   B = B0,   C = Co (35) 

such that drB = drC = 0 and the time dependence of A is given explicitly through 
Q. Therefore 

7   =   Tirk
2 + ArR

2 (36) 

ft   =   Vik
2-AiR2 (37) 

A   =   (8-aß (38) 

and 

B0 = aR2,   C0 = £R2. (39) 

In order for the bifurcation to be supercritical Ar must be greater than zero. 
It is evident from the definition that this can be easily achieved for small r if the 
salt and temperature fields are of comparable magnitude. Curves of constant roll 
amplitude are plotted in figure 6. 
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Figure 6: Schematic curves of Constant R in the 7 vs. k plane for steady solutions 

of the fixed flux amplitude equations 

5.3    Secondary Instability 

On perturbing the solutions (38) such that 

A   =   [R + r(z,T)]eiV"+nT++(z>T» 

B   =   Bo + b(z,T) (40) 

C   =   Co + c(z,T) 

keeping only linear terms in r, <f>, b and c and assuming that all perturbation fields 
are proportional to eXT+iqz yields a quartic dispersion relation 

0    =    (A + q2) { (A + rq2) \^Tq
2 + 2iVikq + A) * + faq2 - 2ikqVr) * 

-2arR2q2 [q2 {ßiVi + A-T/r) + 2ikq {ß^ - ßiVr) + Xßr]} (41) 

+2£R2q2 (A + rq2) [q2 fab + VrSr) + 2ikq (6rVi - Stfr) + X6r] . 

We have not yet explored the possible solutions to this dispersion relation but point 
out that even with all imaginary coefficients set to zero (i.e. if the initial Hopf 
instability occurs with zero frequency) there is the possibility for very rich dynamics 
in this equation. One or more modes may go unstable simultaneously; they can go 
unstable singly, through a stationary bifurcation, or in pairs through a Hopf. Such 
an investigation will be carried out in future work. 
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6     The Amplitude Equation for Fixed Tempera- 
ture and Salt Boundaries 

6.1    Derivation 

The fields which redistribute the background temperature and salt stratification can 
be suppressed by changing the boundary conditions to 0 = S = 0 on both x = 0,1. 
As such, we will be left with a lower order set of equations for the amplitudes. It 
turns out that allowing the fields to come in at lowest order gives a different structure 
to the A equation than in the previous analyses, so let 

¥■ = ¥„ + dP» + e2«^ + • • • 

So our formal system, equation (11), becomes 

L0¥0 + eL0^ + e2LQW3 + e2L,&0 + O (e3) = 

eJVx (*>,*.) + e2 [iVx (fc,tf0)JV, (Vo,*x)]. (42) 

A complete solution of this problem involves solving the linear inhomogeneous 
problem for the new boundary conditions. In an effort to elucidate the possible 
dynamics of this system, we will restrict ourselves to the formal solution of the 
equation, rather than the full problem. The numerical solution of the linear homo- 
geneous problem confirms that a zero wavenumber Hopf bifurcation occurs in this 
case for Rs ~ 8000 so we can proceed with a long wave expansion for this case. 

6.1.1 O(e0) 

At this order the problem is similar to the previous linear problem (only the bound- 
ary conditions have been modified) so 

!Po = A (z, T) #0e^ + A* (z, T) ^e'^ (43) 

and the adjoint eigenfunction is defined as in (19). 

6.1.2 OCe1) 

£o*x = iVx(^o,!Pro) (44) 

210 



Since only terms in e*4"* and constant in time appear on the right hand side of (44) 
there is no resonance and the inhomogeneous problem can be solved at this order. 

Formally, we write 
^ = AAMe2iwt + AA;4>\ + o.e. (45) 

where c.c. denotes complex conjugation and 4?°, *J are particular solutions of (44). 

6.1.3    Ofe2) - The Amplitude Equation 

L0#3 = Nx (*, *„) + K (rpo, 9X) - L&0 (46) 

Once again there are resonances that must be eliminated by projecting onto *0. 
The resulting amplitude equation 

AT = VAtz + iA + aA \AZ\2 + ß \A\2 Azz + C,A*A\ + SA2A*ZZ (47) 

has, in general, all coefficients except 7 complex. 

Since the coefficients remain undetermined, this turns out to be the most general 
equation up to cubic order in A that respects all of the symmetries of the problem 
and, as such, could have been determined entirely on symmetry arguments. That is 
to say, A is equivariant under each of 

z —► z + c   z —> —z (48) 

T—>T + T0   A—>A* (49) 

the last of these expressing the symmetry under x —> —x. As in the previous cases, 
a complete solution is necessary to determine both the magnitudes and signs of the 

coefficients. 

6.2    Steady Solution 

Again, consider solutions of (47) of the form A = Re^kz+nT\ Therefore 

7 = k2{r)r + R2Zr} 

n = -k2{Vi + R2~i} (50) 

Z=ß+(+6-a 
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Figure 7: Schematic curves of constant R in the 7 vs. k plane for steady solutions 
of the fixed temperature and salt amplitude equation. No solutions exist below the 
lowest curve, stable solutions above the uppermost and unstable ones in between. 

In order to have solutions for positive 7 (supercritical) the coefficient of R2 in 
(50) must be positive, and we restrict our attention to this situation. Contrasting 
with the fixed temperature and salt flux case we see that curves of constant R 
all pass through the origin of Figure 7 whereas in the A - B — C case they were 
parametrized by their y-intercept. 

6.3    Secondary Instability 

Focusing on the case of real coefficients we perturb (50) and linearize as in (41), the 
dispersion relation is 

0   =   A2 + X[f (2 + (fi + u)R2) + 2ZR2] 

+ (l + (iR2) (l + VR2) 94 + 2Ä2E (l + uR2) q2 - 

iq2(l + ZR2)(l + (v + ()R2) 

(51) 

where the rescaled wavenumber and growth rate are q = q/k and A = A/Jfc2 and the 
parameters \i = ß + 8 and v = ß — 8. Dispersion relations are plotted in Figure 
8.   For real coefficients it can be shown that, at leading order in q, the unstable 
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Figure 8: Scaled growth rate versus scaled wavenumber for R = 1 and R = R* = 

eigenvector of (52) lies entirely along <f>, the phase. Requiring X (q) to have a non- 

zero root defines R = R, such that all rolls with amplitude 0 < R < R* have a 
band of q over which they are unstable. This Eckhaus-unstable band, as discussed 

in Fauve [5], is shown in Figure 7. 

7    Discussion 

The experiment was intended to be purely qualitative and to motivate theoretical 

investigations; to that end it was successful. There are some fascinating dynamics 

in the breakdown of the original rolls, the slow regular convection in layers and 

the later layer breakdown through interfacial wave breaking. The experimental 

investigation was not exhaustive and there is potential for some quantitative work 

here. In particular, the temperature distribution on the aluminum plate is not 

known and not necessarily linear. The front boundary should also be insulated 

better in order to minimize losses there, but this would make flow visualization 

much more difficult. In order to understand this experiment fully, one must include 

thermal diffusion effects the back plate and, at later stages, understand how the 
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heat advected by the fluid affects the temperature of the aluminum. 

The unique feature of the linear theory is the zero wavenumber instability with 

non-zero frequency which we have shown to be due to the geometry of the problem 

- not to the details of the boundary conditions. 

In the weakly non-linear theory the fixed salt/temperature case showed an Eck- 

haus instability when we restricted attention to parameters with zero imaginary 

part. Including some of the imaginary parts will be the next step in studying this 

amplitude equation. 

We will be carrying out an investigation of secondary instabilities in the mixed 

temperature case and the fixed temperature and salt flux case with coefficients 

derived directly from the linear problem. We hope to study the bifurcation structure 

of the three amplitude system of equations in all parameter regimes as there is the 

possibility for rich new dynamics here. 

Other avenues that could be explored include an investigation of the 3-D vorticity 

mode (the zig-zag instability which was seen in the experiment). A Hele-Shaw 

description of the flow at large R-r and a study of the layer dynamics could ultimately 

lead to a mixing length theory for turbulent layers. 
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Convection with radiation : the fixed flux case 

S. Aumaitre 

1    Introduction 

There are three means to transfer heat : conduction, which involves a molecular 

energetic exchange; convection, which involves a mass transfer, and radiation which 

involves light. In atmospheric dynamics these three processes are strongly con- 

nected because temperature drives the radiative emission, the gas expansion and 

the conducting flux. But often the light-matter interactions are neglected and all 
the radiative effects are included in the conduction. We only consider the case where 

radiation increases the thermal conductivity. But in some media light-matter inter- 

actions cannot be negleted. In this case it is interesting to know the radiative effect 

on gas motion. This provides the motivation for studies which consider the well 
known problem of Rayleigh-Benard convection where some radiative component is 
added. 

Since Goody [1] the stabilising effect of radiation was well understood for grey 

media. In the static state, radiation involves a non-linear profile of temperature 

which is more stable than the linear one. This work has been confirmed by exper- 

imental results obtained by Gille and Goody [2]. Continuing from this work, other 

works have tried to describe more precisely the light interaction with the convective 

gas and the wall boundary. But the case with a fixed total flux (of temperature and 

radiation) are curiously less studied. We would like to try to understand better the 
onset of instability in this case. 

Before considering the fixed flux case, we will describe a set of equations for 

temperature and fluid velocity, the boundary condition added by radiation and the 

approximation introduced. In our conclusion we will give some possible extensions 
in this subject. 
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2      Equations for convection with radiative trans- 

fer 

2.1    Equations for the fluid motion 

The motivation for studying convection with radiation comes from the stellar at- 
mosphere. In this case the Boussinesq approximation is not strickly valid, but we 
adopt it for simplicity. The fluid is assumed to be incompressible except in the grav- 
itational term where the thermal expansion is present . We derive these equations 
from the Navier-Stokes equation [3]. 

We can assume that radiation only affects the heat equation. Hence we obtain 
the most simple set of equations which describe the fluid motion with radiative 

transfer: 

PoDtu = -Vp + Pog(l - a(T - T0))ez + rjV2u     (2.1.o) 

PoCvDtT = *V2T - V£    (2.1.6) 

Vu = 0     (2.1.c). 

We denote Dt = dt + it • V, the velocity as u, the pressure p, the temperature as T 
the mean density as p0 and is the gravity field as — gez. the thermoconductivity as 
k, the specific heat coefficient as Cv the viscosity as 77 and the density expansion as 
a. We denote the radiative flux as qr, a new variable introduced by radiation. We 
need a new set of equations to describe this term. 

2.2    Equation for the radiative flux. 

Radiative flux is described by the light intensity equation, but we need some ap- 
proximation to derive this equation. A rigorous description of interaction between 
light and gas in motion is actually very complex. It involves a relativistic treatment 
of photon and particle motion [4]. Except for several extreme astrophysical cases 
this is not necessary. But even without a relativistic treatment the light intensity 
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equation is still an integro-differential equation [5]. 

So let us just consider only grey media. We can describe them in terms of opacity 
which is characterised by an absorption coefficient. It seems reasonable to suppose a 
local thermodynamic equilibrium (L.T.E.) when the temperature difference between 
the two walls is much smaller than the mean temperature. In this case the gas light 
emission can be described by the black body law. The light intensity equation can 
be approximated by : 

-dtI(ü, v) + hdJin, u) = KVPO{B(V) - 7(fi, v))     (2.2). 

where I(Q, v) is the light intensity, /Cj, is an absorption coefficient and B{u) is the 
Planck law. v is the light frequency, / gives the light beam's direction and Q is a 
solid angle definied by U. c is the light velocity which is much bigger than the other 
hydrodynamical velocity. We can reasonably neglect the time dependence in the 
above equation. 

We must now introduce some global optical momentum. We define the radiative 
energy density ur by : 

urc= ^- f   J(Q, v)dudCl, 
47T Jv,n 

where j is introduced to simplify the equations below. 

The radiative flux qT is 

qr= f   I(Ü,u)-ldvdÜ. 
Jv,n 

The radiative pressure tensor 11,-* is given : 

n* = /   J(fi, v)klkdvdti 
Jv,0 

We need a infinite set of moments as is the case when solving the light intensity 
equation (2.2). We relate these moments by successive integration of equation (2.2). 
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A first integration gives 

,a 
V£ = 47r/c^^(-r4 - j)     (2.3.0) 

7T 

If we multiply (2.2) by /* we obtain 

djlik - KoptPoQrk      (2.3.6) 

We must now close our problem. The L.T.E. assumption suggests we take an 

isotropic tensor pressure proportional to the radiative energy density. As is the case 

for the black body law we have : 

If we introduce this relation in (2.3.6) and combine it with (2.3.a) we get an 

equation in j which closes our problem : 

4v2j = TK+PJÜ - ^T4)     (2.4) 
T 7T 

where f = \/3/CoptPc 

We also need to specify the boundary condition for the velocity, the temperature, 

and our new optical variable j. 

2.3    The boundary condition. 

We consider the classical Rayleigh-Benard problem of an infinite layer of fluid be- 

tween two horizontal parallel walls at z = -d/2 and d/2. We fix the wall temperature 

or the total flux. We have 

(-fcVT + V£) = F     (2.5) 

where F is a control parameter in the latter case. 
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We often use the stress free boundary for the velocity at both walls, we could 

consider also the no slip condition or different boundary conditions at the top and 

at the bottom. We recall that free slip means w = 0 and dxu = 0 on the wall, where 

u and w are the horizontal and the vertical coordinates of the velocity respectively. 

For no slip we have u — 0 on the wall. We also need boundary conditions for our 

optical parameter j. It is characterised by the 'color' of the boundary. We give 

below some idea of how we understand the two extremes cases. 

In the mirror case the wall reflects all the incident radiation . The radiative flux 

must vanish on the wall, thus we have qT ■ ez\w = 0. The equation (2.3.b) and our 

closure relation involve a condition on j : 

dzj\w = 0     (2.6.o). 

On the other hand we must consider the black wall case where all the incident 

flux is absorbed. In the equilibrium black body case where all the walls are at the 

same temperature the walls absorb all the incident radiation and emit following the 
black body law. By analogy let us assume : qT-ez\w = cAur where Aur is the energy 

density difference between the top and the bottom. The heuristic argument above is 
not a proof but I hoped that it could help to understand the origin of the following 
boundary condition on j for black wall : 

dj±fj\w±=0     (2.6.6). 

We can introduce a coefficient £„, which measures the color of the wall to describe 

the intermediate case :dzj ± Cw±fj\w± = 0     (2.6.c). 

The previous arguments amont to the Milne-Eddington Approximation for ra- 

diative transfer. For more information there are several papers and books on this 

subject, ref [6] and [7] for instance. 

2.4    The stabilizing effect of radiation. 

Goody showed clearly the stabilizing effect of radiative transfer on the onset of 

convective instability. In the static state, radiation involves a non-linear gradient of 
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temperature more stable than the linear one. As we have assumed (Ta > AT0 the 

temperature difference between the wall) we can linearize this set of equation. The 

gradient is given by [1], [2], [8] : 

DAT(z) = M + H- cosh(az) 

where D = £, M and H are some function of f and T0 and a2 = f 2 -\ £-*-. 

The profile of temperature gradient is shown in Fig(l) with a = 10. We can 

understand the stabilising effect of this profile if we remember that in the Rayleigh- 

Benard problem the onset of instablity is given by a critical value of the dimensionless 

Rayleigh number proportional to ß - d4, where ß is the initial temperature gradient 

(linear in the Rayleigh-Benard problem) and d is the distance between the horizon- 

tal walls. We can see from Fig(l) that radiation decreases the thickness where the 
temperature gradiant is strong. It is depth the 8 ~ a-1 which is important for the 

onset of instability. We can expect that the critical Rayleigh number grows as <P/83 

with this approximate reasoning. 

This simple dimensional argument must be confirmed by a more complete study 

of the linear stability. Goody used a variatonal principle and showed how the critical 

Rayleigh number increases with the optical parameter. There are some alternative 

methods [8] but at this level all solutions need some numerical computation. 

This effect was studied by several authors with different radiative boundary 

conditions, and for different approximations for the gas and light interaction. But the 

fixed total flux regime seems less often studied. Moreover the long wave expansion 

developed by Chapman and Proctor [9] could permit us to get some analytical 

results. 
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Fig(l) ; Tliu tuinpuraluro gradient in iho sliilic SlalO. 

Figure 1: Static Temperature Gradient between two isothermal wall with arbitrary- 
vertical unit. 

3    The total fixed flux case. 

3.1     The dimensionless equations. 

As before we assume that the temperature difference is small enough to linearise our 
equations. We use the classical length scale d and time scale (P/K, where K = k/p„Cv 

is the thermal conductivity. The fixed flux boundary condition is 

kdzT + -^dzj\w = -F     (3.1) 

which suggests the following scaling for temperature : Td <— FdTa/k and j : 
3d *— (VST/AirOFdja where the subscriptes {d,a} means represents the dimen- 
sional and dimensionless variables respectively. 

Under this scaling the equations become : 

Pr^Dtu = VP + RaAT + V2tZ(3.2.a) 

DtAT = V2(j + AT)(3.2.4) 

V2; = r\j - XAT + X)(3.2.c) 

V • Ü = 0(3.2.<f) 

where all our variables are now dimensionless. The dimensionless parameters are 
Ra = (agFd4)/(Kuk), the rescaled Rayleigh number, Pr = V/K, the Prandtl num- 
ber, T = f • d the optical length and A = (8aT*d/\/ZTk) which could be interpreted 

222 



as the rate of the heat transfer by radiation over the normal heat conductivity. The 
coefficient x = {±-K(JT*)I{\/ZTF) depends on the external parameter F but is nei- 
ther present in the static temperature gradient nor in the perturbation equations. 

Therefore this dependance is unimportant. 

We must specify the boundary condition on j. The simplest case is the mir- 
ror. Let us first consider the case where dzj\w = 0. We can note that this set of 
equation with this boundary condition does not break the Boussinesq symmetry. 
Radiation has no effect in this sense but we can easly introduce some asymmetry in 
our boundary condition later with different (w+ and (w-. 

3.2    The static state. 

Without fluid motion, T and ; are a function of z only. The static state is given by 

the two following equations : 

D2(ATo(z) + jo(z)) = 0(Z.3.a) 

D2j0{z) - rj0(z) = -r\AT0{z) - x(3.3.6). 

With the above boundary condition we can easily obtain the temperature gradient: 

DAT0(z) = - 
T2 /Acosh(az) 
Ö2" V cosh(a/2) 

+ 1 (3.4). 

where a~2 = T~
2
(1 + A)-1 is an important length scale of our problem as in the 

constant temperature case. We note that the mirror boundary conditition involves 
DAT0(z)\w = -1 or DAT0(z)\w = -F with the dimensional variables. Having 
obtained the static backgroundstate, we can now investigate its linear stability. 

3.3    The pertubation equations. 

Squires theorem tells us that we need consider only the two dimensional case. Let us 
add a small pertubation to our static state. We call 6 the temperature perturbation, 
j the radiative perturbation and we introduce the two dimensional stream-function 
defined by dxip = w and dzip = —v., where tp is the stream function and u and w 
are the two components of the velocity (horizontal and vertical respectively). We 
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derive equation (3.2.a) in such a manner that we can eliminate the pressure term. 
We obtain 

Pr-1 Dt V V = Ra6x + V V     (3.5.0) 

DtB + D6T0(z)ipx = V2(fl + 3)     (3.5.6) 

V2j - r2j = -T2X6     (3.5.c) 

where Dt = dt + tyxdz ■ —il>zdx' includes the non linear term. 

First we neglect the non-linear term and we take : 

e exp(a;i — iax) 
( Hz) 

0(z) 

V J(*) J 
where W(z), Q(z), J(z) are functions of z only.   3?(a>) gives us the growth rate of 
\P(.z), ©(z), J(z) at the horizontal wave number a. The above equation gives : 

w 
(D2 - a2){D2 -a2- -=-)*(z) - iaO(z) = 0     (3.6.o) 

rT 

(D2 -a2- u)Q{z) + iaV(z)DAT0(z) - (D2 - a2)J{z) = 0     (3.6.6) 

(D2 -a2- r2)J(z) + T2\e(z) = 0     (3.6.c) 

We assume that we have no overstability as in the Rayleigh-Benard case, hence 
5(u;) = 0. The first instable mode is given by $t(u>) = 0. We must solve the above 
equation with u) = 0 to get the marginal stability curve, which gives the critical 
Rayleigh number for any wave number. The minimum of this curve gives us the 
wave number of the first unstable mode and the critical Rayleigh number. We can- 
not make analytical progress because of the non-linear gradient of temperature, but 
we can solve it numerically as a eigenvalue problem. 

The results of numerical computation are given fig(2). There are many difference 
with the non radiative case. When the radiative transfer is zero we know from Hurle 
and al. [10] that for a constant flux, the most unstable wavenumber is equal to 0 
because it is a minimum of the marginal stability curve. We can see from Fig(3) that 
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fig 2 Marginal Stability Curvo (or lambda - 100 and lau - 0 5. 1. 12 

iau-1 ?'   © 
tau-r ■--• 

iau-0 5" 

y X 

wave number 

Figure 2: Marginal Stability curves for X = 100 and T = 1.2,1,0.5 

is not always the case with radiative transfer. There is a range of optical parameters 
(T < 1.1) where the marginal stability is a maximum for a zero wave number. It 
means that the first unstable mode has a finite wave length. This phenomenon seems 
to have some similarity with the case of penetrative convection with fixed flux [11]. 
We must do a long-wave expansion to understand those phenomena better. 

3.4    A long wave expansion. 

Let us assume that the marginal stability curve has a minimum at zero wavenumber. 
We must study our equation around this point in the weakly non-linear regim. We 
take X = e_1x to be the adopted length scale and following Chapman and Proctor 
[9] we take T = e~H to be the adopted timescale where e ~ d/l «C 1 is small. L is 
the horizontal length of the cell. In the new variable (3.5) becomes : 

e4örVV + eV'xVVz - e^zV^jf = eRa6x + V4ip 

e4dr6 + ei>x [DAT(z) + 9,] - ^ZBX = V2(0 + j) 

V2j - r2j = -T2\0 

where V2 = (d2
z + ^dxx). For the distinguished scaling which keeps a connection 

between 0 and tp we must rescale ip by e<f>. We also get : 

e4&rVV + efeV2^ - eVzV2fo = RaBx + VV     (3.7.o) 

e4#r0 + Jfa [DAT(z) + 9Z] - <?<j>z6x = V2(0 + j)     (3.7.4) 

V2i - r2j = -T2X6     (3.7.c) 
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The boundary condition for the perturbation quantity is dz{9 + j)\w = 0. An 
integration of (3.7.b) over z with this boundary condition gives the solvability con- 
dition: 

e4dr<0> +e2 < <f>xDAT(z) > -he2 < <j>9z >x= e2 < 6 + j >xx      (3.8) 

/2 
1/2 

11*2. 
where <>= f_\i2 -dz. We expand our variables as 

Similarly we write our control parameter : 

Ra = Ra0 + <?Ra2 + e4Ra4 + ■■■ 

where Ra0,Ra2,... are the first coefficients of the Taylor expansion of the marginal 
stability curve. 

We must solve our set of equations at each order, the solvability condition at the next 

order gives us the required information to construct the marginal stability curve, 

since the sign of Ra2 show us whether Ra(0) is a minimum or a maximum. 

3.4.1    The first order. 

We introduce the previous expansion in (3.7)and at the leading order we obtain 

<f>ozzzz + Ra06oX = 0     (3.9.o) 

8ozz+jozz = 0     (3.9.6) 

jozz - r2j0 = -T2\eo     (3.9.c). 

We can solve the above equation with the boundary condition : 

4>ozz\w — <f>o\w = 0 
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Figure 3: the denominator of Ra0 vs a for A = 100,50,10 

Ooz +joz\w = 0 

jc«L = 0 

If we integrate equation (3.9.b) twice we obtain : 

where we call f (X. 

e0+j0 = f(x,T) 

T} the form function. 

Jo = ^f(X,T), 90 = £f(X,T) and <f>0 = -%g (z* - §z2 + i) fx(X,T). 

The critical value of Ra0 is given by the solvability condition 

< </>oXDAT{z) >=< 60 + j0 >xx ■ 

If we take fxx{X, T) ^ 0 we must impose 

Ra0 = 
aH\ 

[(^tanh(a/2)-|| + ^)A + |](3-10) 

The above denominator seems always positive (cf Fig(3)). 

3.4.2    The second order 0(e2) 

If we want to know the sign of Ra,2 we must consider the second order where our 
set of equations becomes : 
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<j>2zzzz + R&O02X = 4>oX<l>ozzz ~ <j>oz<t>oXzz ~ 2<f>oXXzz ~ R^oX        (3.11.a) 

02zz + J2zz = -<j>oz0ox + <f>oxDAT0(z) - fxx(X, T)     (3.11.6) 

J2zz ~ T2j2 + T2\e2 = joXX        (3.11.C) 

and <f>2,02,J2 must satisfy 

dr < Bo > + < faxDLT(z) > + < <j>J2z >x=< 62 + j2 >xx     (3.12) 

We must solve a differential equation involving a sixth order polynomial multiplied 
by some hyperbolic function. We must then integrate the given expression four 
times. Even if all the above functions have an analytical expression, we are unable 
to resolve it during this summer. However we can deduce the form of the equation 
given by the above solvability condition by symmetry argument. With our boundary 
condition we do not break any Boussinesq symmetry and the form function has the 
same form as the equation without radiation [9]. 

h = -^Jxx - A(T, X)fxxxx - B{T, X)(fx)x     (3.13) 

We must find the f(X, T) = f0 exp(iKX) on the marginality curve. In this case 

Ra2 = Ra0A{r, X)K2     (3.14) 

therefore A{T, A) gives the sign of Ra2. If we want to know the growth rate of the 
most unstable mode we must take f(X, T) = f0 exp(fiT + iKX) and the equation 
(3.13) when linearized gives 

ü = ^-K
2
-A(T,\)K

A
     (3.15) 

Ka0 

The maximum of this curve Kimax = (Ra2/2ARa0)
1'2 gives us the most unstable 

mode in the linear regime. However, this maximum does not give us the preferred 
mode of the horizontal structure in the nonlinear regime. Indeed equation (3.13) 
defines a Lyapunov functional. If we multiply it by fr and integrate we get 

"/ 
2JV _ dV[f] (hfdX 

dt 
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Figure 4: the first unstable mode of the marginality curve vs r for A = 100 

where V[/] is the Lyapunov functional which is a decreasing function of time. Chap- 
man and Proctor [9] used this functional to prove that all growing modes are unstable 
when competing with a mode of larger wavenumber. The only stable mode is the 
one with the largest wavenumber which can fit the container. 

There is some value of (T*, A*) where Ra2 = 0. We must rescale 6 and j by e and 
iff by e2. The form equation becomes 

h = -f^/xx + C(rt \)fxxxxxx - D(r, X)(f3
x)x     (3.16), 

Ka0 

where C(T, A) gives the sign of RaA. We expect C(r, A) > 0 for A(r, A) < 0. The 
maximum growth rate is at wavenumber Ä2max = {Ra2/ZARa0) ' . However we can 
also derive a Lyapunov functional from (3.16) and the most unstable mode cannot 
be deduced from a simple linear analysis. 
When Raz < 0 we cannot do a long wave expansion except when the minimum is at 
a distance e from zero. Fig(4) shows that the wavenumber which gives the minimum 
of the marginal stability curve grows quickly for r < 1.1. The long wave expansion 
becomes inappropriate very fast. 

It could be very interesting to know the value of the coefficients. However, in 
the limited time available I was only able to calculate one of them. We anticipate 
that the computation is more tractable if we assume that 

DAT0(z) 
T2 /A(l + aV) 

2 '    1 + a2/4 
+ 1 

a 

However, even with this simplification this computation is still difficult. 
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To summarize our result we have : For a > a* we have Ra2 > 0 and the marginal 

stability curve grows continuously. We can make a long-wave expansion and we find 

the same form equation (3.13) than for the non-radiative case. Radiation only 

increases the instability onset. For a = o* we have Ra2 = 0. In this case we need 

to rescale our variables to find an equation for the form function. For 0 < a < a* 

R2 is negative and the long wave expansion becomes inappropriate. For a = 0 we 

find the classical Rayleigh -Benard problem where Ra(0) = 5! . 

4    Conclusions and Perspectives. 

The work which I completed during the summer showed that convection with ra- 

diative transfer has some extremely interesting unexplored behaviour. I have shown 

that Rayleigh-Benard problem is a singular limit of the above model. This will be 
explored further in subsequent work. 

During this study I was examining the limit of very small interaction and very 

hot temperature. The radiation increases only the thermal conductivity in this case. 

We can derive a set of equation for the Boussinesq approximation for a zero Prandtl 

number limit. But as noted by Malkus [3] the convection motion needs two di- 
mensinless parameters to describe it. A better approach may be to derive a new set 

of equations from the Navier-Stokes equations. 

If we have asymmetric boundary conditions we must add a term proportional 

to (fx)xx hi equation (3.13). If consider the more realistic case where the optical 

thickness depends on temperature we can expect a term proportional to {P)xx as 

shown by Depassier and Spiegel [12]. The form equation becomes : 

h = -jf^fxx ~ Mr, Vfxxxx - B(r, X)(fx)x + H(r, X)(fx)xx + K(r, X)(f2)xx. 

It could be interesting to compute the solutions as function of our optical paramaters. 

Another interesting problem is to consider the radiative influence on the spatial 

distribution of different sorts of gases. We could study the convection with radiation 

and two gases with very different absorption coefficients. Coupled with Soret or Du- 
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four effects, this problem will become very complex but certainly very interesting. 
Also of interest is the remtroduction of the time dependence in the light intensity 

equation (2.2), relevant to very hot astrophysical objects. 
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A Few Steps Toward Staircases 

Francesco Paparella 

1 The staircase problem 

One of the most fascinating aspects of double diffusion is the formation of layered structures. 
In such sructures the vertical profiles of the two diffusing quantities have shapes that look 
like staircases (figures 1,2 in the first Ray Schmitt lecture, this volume). What is even more 
interesting is that staircases are observed not only in the laboratories, but also in the sea. 
Furthermore, the staircases influence the rates of vertical mixing of heat and salt, so that 
those elusive structures may play a role in the overall thermohaline dynamics of the seas. 

Although there is an abundance of experimental and observational data, at this time 
no theoretical model seems to be able to reproduce (or even to mimic) the process of the 
formation of a multi-layered structure from initial constant gradient conditions. 

One of the big problems that one must face is the extreme complexity of the flow along 
the horizontal direction. In fact, convection (with high Rayleigh number) develops inside the 
layers and, when the system is driven by the fall of the less diffusive substance, the interface 
itself is characterized by salt fingers. 

The idea that underlies this work is that to model the observed vertical profiles of tem- 
perature and salt it should be possible to get rid of the complications of the horizontal 
direction and cast a set of equations that depend only on the height and the time. I have 
been comforted by the fact that such an approach has already been attempted in the study 
of the Rayleigh-Benard convection [5]. Single-mode equations similar to those presented here 
have been studied also by Gough and Toomre [6], but they didn't take in to account the 
possibility of a horizontal shear. 

2 The equations 

My primitive equations are the Navier-Stokes equations in the Boussinesq approximations, 
coupled with advection-diffusion equations for the temperature and the salinity field. I 
decided to work in two spatial dimensions because this permits a description of the flow 
velocities through a single scalar field (namely the streamfunction ip) and because this sim- 
plifies the algebraic process of averaging out the horizontal dependency. The non-dimensional 
equations read: 
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&Vatf-J(tf,VV)   =   -<rRrdxT + aRsdxS + aVV 
dtT-J{iJ>,T)   =   V2T (1) 

dtS-J(tp,S)   =   TV
2
S 

where ÄT is the temperature Rayleigh number, Rs is the salinity Rayleigh number, J(,) 
is the Jacobian operator, T is temperature, and S is salinity (here I used the same non- 
dimensionalization as in [3]). The velocities can be recovered from the streamfunction: 
u = dzi$>\ w = —dxij>, hence V • u = 0. 

In order to write horizontally averaged equations I split the three variables ip, T and S 

as: 

1>=$(z,t) + il>Xx,z,t) 
T = T(z,t) + T(x,z,t) (2) 

S = S(z,t) + S'(x,z,t) 

where the overbar denotes horizontal average and the variables with a prime are the fluctua- 
tions around this average. Plugging this definition into the_primitiveequations and averaging 
over x one gets the equations for the averaged variables ip, T and 5: 

dtdzz$  =   dz(dxlpVhp + adzzz^) 

dtT   =   d/(T^f' + dMT) (3) 

dtS   =   dz(sidxi? + rdz's) 

Those equations still depend on the variables with a prime. To close the problem one has to 
take into account the equations for the fluctuations: 

0,W - W, v V) + W v2V) - dxtß'dzzz^+dzi>dxv
2ij>' = 

-aRTdxT' + aRsdS' + aVV 

dtr - j(y>f, T') + dz{Tdxy) - dX7p'dzT+dj>dxr = v2r'      (4) 
dtS'-JW,S') + dz(Sdx1>')-dx4>'dzS + dzi>dxS'   =   rV2S' 

Note that the quantity U(z, t) = 8$ represents a horizontal velocity field. In most past 
works ([5],[6],[8]) it has been put to zero. Then more recently there has been experimentally 
observed the spontaneous generation of a horizontal shearing velocity in Rayleigh-Benard 
convection ([2],[9]). Furthermore, it is commonly believed that a horizontal shear is the 
main factor limiting the growth of salt fingers in the sea (see the second of the Eric Kunze's 
lectures, this volume). Hence, U will be a significant element in my calculations. 

The next step is to expand the horizontal structure of those equations and to drastically 
truncate the expansion after an arbitrarily chosen number of terms. This is the very idea 
of a Galerkin truncation, with the only difference that the dependence of one of the spatial 
coordinates (the height z) will be retained here. 
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It is convenient to expand the vertical velocity fluctuations, rather than the streamfunc- 
tion: 

u' = Y,hWk (5) 

Prom continuity it follows that: 

u' = Y^a:2dzWkdxfk 
k 

^' = Eak2wkdxfk 
k 

Temperature and salinity fluctuations are expanded in a analogous way: 

r' = E/*0* (6) 
k 

*' = £/*** (7) 
k 

The functions fk used in the expansion are the planform functions of the linear theory, that 
is, the solutions of the eigenvalue problem for the Laplacian operator. Because there is only 
one horizontal coordinate, the eigenvalue problem is simply: 

dzzfk = -4fk (8) 

whose solutions are sines and cosines. So, in two dimensions this expansion turns out to be 
a Fourier transform. Wk(z,t), ®k(z,i), $fc(z,i) are, respectively, the vertical velocity, the 
temperature and the salinity fluctuations associated with the horizontal scale l/ak. 

Plugging those expansions into the equations (3) for the averaged quantities, and into 
the equations (4) for the fluctuations, after a lot of algebra and some care in multiplying the 
(4) by fk and averaging over x, one gets a close a set of (an infinite number of) equations 
that involve if>, T, S, Wki ©fc, and $*. 

3     Single mode equations for double diffusion 

All this equation crunching was needed for two pourposes: hide the horizontal dependence 
into the fk, and split the equations in modes associated with a spatial scale. The simplifica- 
tion consists in assuming that the dynamics of the flow will be dominated by the contribution 
of just a few of those modes. For example, in the Rayleigh-Benard convection, even at very 
high Rayleigh numbers, the overall flow circulates with patterns having roughly the same 
spatial scale of the convection cells that appears just after the first instability. 

For the fingering double-diffusive convection it seems that at least two modes should be 
retained: one associated with the big scale of the convection inside the layers, the other 
associated with the smaller scale of the salt fingers that develops between the layers. 
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However, the simplest thing to do is to retain just one spatial scale. Although this won't 
be a complete model with fingering, such a crude truncation is still expected to show at least 
the early stages of the layering process, what could be called a layering bifurcation. 

The single mode equations are: 

dtU   =   dz(adzU + -W+dzW---W-dzW
+) 

\ a a J 
dtT = dz(dzT-W+Q+-W-Q-) 

at5 = dz (rdrS - W+$+ - W-$-) 

dtQ
+ = Ve+ + aUQ- - W+dzT 

3*0- = VQ- - aUe+ - W~dzT (9) 
0t$

+ = TP$
+
 + aU$~ - W+dzS 

dt$- = TP$- - aU$+ - W~dzS 
dtVW+ = a1?W+ - aa2 (äT0

+
 - Rs$+) - aW"d„U + aUVW~ 

dtVW = a7>2W--aa2{RTQ--Rs^~)+ccW+dzzU-aUVW+ 

Here W+, 0+, $+ are the coefficients of sin(ax), while W~, 0_, $" are the coefficients of 
cos(ax). The operator V that appears in the diffusion terms is denned as V = (dzz — a2) 
and 1/a is the only horizontal scale retained in the truncation. It is convenient to split the 
average temperature and salinity into a linear part, that is the static, conductive solution, 
plus a term that becomes non zero when the convection sets in: 

T   =   z + f 

S   =   z + S (10) 

The choice of the sign of the linear part determines the type of stratification that one is 
imposing on the problem. The stratification (+z, +z) has a stabilizing temperature and 
a destabilizing salinity (fingering regime). The stratification (—z, — z) has a destabilizing 
temperature and a stabilizing salinity (diffusive regime). The two other possibilities, namely 
(_J-ZJ —z) and (-z, +z) correspond to a completely stable and a completely unstable strati- 
fication. 

In this work I assume that the fluid is confined between two horizontal slabs having 
fixed temperature and salinity, and I will use stress free boundary conditions. This is very 
convenient in writing a spectral code to solve numerically the single-mode equations (9) 
because those boundary conditions are fullfilled by a discrete sine transform along the z 
coordinate for the variables f, S, W*, Q±, $=*=, and a discrete cosine transform for U. 

Following [1] I will also assume that the non-dimensional slab height and the non- 
dimensional temperature and salinity differences are all equal to 7r, instead of the usual 
value of 1. This allows me to get rid of a lot of annoying TTS in the code, but it also means 
that all the Rayleigh numbers that I will mention must be multiplied by TT

4
 in order to get 

the usual values. 
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As the linear theory shows that the first unstable mode has a horizontal scale comparable 
to the layer thickness, I will choose to set a = l/-\/2, that is the value of the most unstable 
wavelength in the Rayleigh-Benard convection. 

4    First results 

As a way to test the calculations, I checked that it was possible to recover from the single- 
mode equations (9) two previous results. I do a two-mode Galerkin truncation along the 
vertical direction assuming that: 

ip   =   A sin(ax) sin(z) + B sin(z) + C cos(ax) sin(2z) 

T   =   £>cos(ax)sin(z) + ^sin(2z) + i?,sin(ai)sin(2z)-z (11) 

S   =   G cos(ax) sin(z) + H sin(2z) + / sin(ax) sin(2,z) — z 

where A through I are amplitudes that depend only on time. In particular, the terms 
Bsin(z), Esin(2z) — z and H sin(2z) — z represent, respectively, the horizontal velocity 
U, the horizontally averaged temperature T and salinity 5. The stratification is that of 
the diffusive case. Plugging the expansion (11) into the Boussinesq equations (1) or into 
the single-mode equations (9), one gets the same set of 9 ordinary differential equations 
(O.D.E.s): 

A   =   -a(l + ^)A-^(RTD-RsG) + ^(^±^JBC 

B   =   -aB-^aAC 
4 

C   =   ^^^C^^^F-RsD-^^AB 

D = -(1 + a2)D - aA - aAE - ^BF 

E = -AE + ^AD (12) 

F = -(4 + a2)F + aC + ^BD 

G = -r(l + a2)G-aA-aAH-^BI 

H = -ATH + ^AG 

j = _T(4 + a2)I + aC + ^BG 

Switching off the salinity variables G, H and / one recovers the 6 O.D.E.s that Howard 
and Krishnamurti used to mimic the onset of the shear instability in Rayleigh-Benard con- 
vection [1]. 
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Switching off the shear and the possibility of having tilted convective cells (that means the 
variables B, C, F, I) one recovers the 5 O.D.E.s used by Veronis [3] to study the overstability 
in double diffusive convection. 

Finally, on leaving only the variables A, D, E, one finds the three equations in which 
Lorenz [4] first found deterministic chaos. 

An illustrative example of the behaviour of these 9 O.D.E.s is figure 1, showing the 
average temperature amplitude and the shear amplitude of the whole system against the 
same variables of the Howard and Krishnamurti model. Here the thermal Rayleigh number 
is RT = 200, the salinity Rayleigh number is Rs = 100, the Prandtl number is a = 10 and the 
Lewis number is T = 1/3. Because of the highly stabilizing effect of the salt, the temperature 
amplitude falls on a steady value and the shear is absent (the small initial perturbation is 
damped out very soon), while in the Howard and Krishnamurti model there is a fast time 
dependence. 

Lowering the salinity Rayleigh number to Rs = 50 (figure 2) the temperature gets a time 
dependence in the 9 O.D.E.s too, but the shear is still absent. 

Finally, when the salinity Rayleigh number is as low as Rs = 15 one observes a strong, 
time dependent shear also in the 9 O.D.E.s (figure 3) . 

5    Rayleigh-Benard convection 
I want now to explore the capabilities of a single-mode truncation with z dependence to de- 
scribe the Rayleigh-Benard convection after the onset of a large scale shearing velocity. One 
expects that with the z dependence retained, the description of the vertical heat transport 
should be qualitatively improved. 

Early works [7],[8] shows that the Nusselt number Nu (which is a non-dimensional mea- 
sure of the vertical heat flow) is related to the Rayleigh number by the following power 
law: 

Nu a R%3 (13) 

A recent experimental work [9] shows that for very high Rayleigh numbers the scaling of 
the Nusselt number is: 

Nu oc i£/r (14) 

This change of the exponent value has been attributed to the effect of the shearing velocity 

U^- , •     , I numerically integrated the equations 9 for the case of Rayleigh-Benard convection (that 
means without the salinity variables and with the stratification T = —z + T). The result is 
presented in figure 4, where is plotted the Nusselt number versus the Rayleigh number. The 
monotonically ascending branch corresponds to an integration in which the variables U, W~ 
and 0" have been switched off. This is the case of the single-mode equations presented in 
[5] who are known as to have steady solutions that show the 1/3 scaling (unpublished result 
by L. Howard). 
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As the shear sets in the Nusselt number drops. The descending branch in figure 4 
corresponds to steady state solutions with a nonzero U. With further increase of the Rayleigh 
number, the solutions become time-dependent and the Nusselt number rises with RT. At 
approximately RT = 225 the direction of U begins to reverse with time. This marks a steep 
ascending branch in the graph that ends at approximately RT = 700. After this value the 
direction of the shearing velocity doesn't reverse anymore and the rise of the Nusselt number 
with the Rayleigh number is milder. 

I will not state anything about the asimptotic limit of Nu for large values of RT because 
I haven't been able to explore a range of Rayleigh numbers high enough. In fact, as RT 

increases, even smaller time steps and higher resolutions are needed in order to carry out a 
meaningful numerical integration, because of faster time dependence of the solutions and of 
sharper gradients that develops inside the boundary layers. 

However, it is reasonable that, to recover the 2/7 scaling law, it will be necessary to 
include smaller spatial scales in the truncation. These scales could play an important role 
describing the interaction between the large scale shear and the convective cells. 

6    The overturning case 

I obtained the first numerical result for the full single-mode system (9) with the following 
parameters: a = 10, a = l/-\/2, RT — 10, Rs = 333, r = 1/50. The imposed stratification 
is that of the fingering case. 

With that choice of parameters the system is in a statically unstable situation: the water 
near the top boundary is so salty that its density is greater than that of the fresher, colder 
water near the bottom layer. So, the gravity doesn't need any help from the thermal diffusion 
to set the beginning of the convection. 

Even so, the system is still a double-component one, and an inspection at the behaviour 
of the salinity S reveals interesting features (figure 5). In the middle of the slab an insta- 
bility develops that leads to the formation of a sharp gradient that splits in two wave-like 
disturbancies, one travelling upwards, the other donwards, until they are absorbed by the 
boundary layers. This process repeats over and over, but with these parameters its time 
dependence is irregular. 

With continous lowering of the salinity Rayleigh number and the Lewis number along 
the line Rs • r = 6.6 the system become regular, showing a sharp gradient that forms and 
splits periodically in time. 

With a still lower Rayleigh and Lewis number the solutions become steady, without 
showing any layering, at approximately Rs = 107 and r = 1/16. 

I found numerical evidence that this is a subcritical bifurcation by raising again the two 
numbers, and finding steady solutions up to Rs = 127 and r = 1/19. 
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7 Layering! 
Adjusting the two Rayleigh numbers so as to produce a statically stable situation (that is 
in a true fingering regime) and keeping the same Lewis number, I didn't find any layering. 
However, for RT = 1000, Rs = 666, r = 1/3 I find the results of figure 6a, where two layers 
separated by a high gradient interface are clearly visible in the salinity profile. In a few non- 
dimensional time units, the numerical solution evolves from a small sinusoidal perturbation 
of the initially linear stratification to a steady solution corresponding to the shown profiles. 
The convection that develops in that layer also is able to excite a shear. In figure 6b the 
profile of the horizontal velocity U is shown. 

A second run, with RT = 5000, Rs = 3333, r = 1/3, showed three layers separated by 
two interfaces. The temperature, salinity and horizontal velocity profiles are shown in figure 
7. Note the much stronger shear than in the previous case. 

8 Future work 
A modal expansion with amplitudes that depend on both z and t seems to be a useful tool 
in the study of convection. Even with the severest truncation (only one horizontal scale) it 
reproduces the behaviour of the Rayleigh-Benard convection at low Rayleigh numbers and 
gives a realistic scenario for higher Rayleigh numbers, provided that the horizontal shearing 
velocity is not neglected. 

Future work is needed to asses the asymptotic relationship of the Nusselt number with 
the Rayleigh number for the single-mode truncation. 

More puzzling are the results for the double-diffusive convection. A single-mode trunca- 
tion is quite likely not enough to reproduce laboratory or in-situ observations. Nevertheless, 
a set of equations for a single horizontal scale should be considered as a basic building block 
for a physical decription of the flow, until the nonlinear interaction between scales is mild 
and the consequent creation of new ones is negligible. For this reason, future work will focus 
on the study of the equations (9) varying the horizontal scale a and the Lewis number r. 
Also, the role of the shear needs to be further investigated. A run in which the variable U 
was switched off showed a milder interface gradient than the corresponding run with the full 
set of variables. 

Finally, I am working on a two-scale version of the spectral code that I hope will be able 
to simulate a much more realistic fingering convection. 
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Figure 1. Average temperature and horizontal velocity amplitudes (variables E and B) of 
the 9 O.D.E.s for double-diffusive convection (solid line) versus the same variables of the 6 
O.D.E.s by Howard and Krishnamurty for Rayleigh-Benard convection (dashed lines). 
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Figure 2. Same as in fig. 1, but with Rs = 50. 
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Figure 3. Same as in fig. 1, but with Rs = 15. 
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Figure 4. Nusselt number vs. Rayleigh number for a single-mode system. The Prandtl 
number is a — 10, and the horizontal wavelength is a = l/\/2. Triangles are results obtained 
putting to zero the variables U, W~ and 0". The spatial resolution is 64 grid points. The 
timestep is At = 10-4 non-dimensional time units. The solutions found are steady. Circles 
are results for the full system. Timestep and resolution as for triangles. Stars are results 
obtained with a resolution of 256 grid points and a timestep At = 10-5. The Nusselt number 
is averaged over 5 non-dimensional time units after a 50 time-units-long run needed to damp 
out the any transient. 
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Figure 5. Time sequence of the horizontally averaged salinity 5 for a = 10, a - 1/V2, 
RT = 10, Rs = 333, r = 1/50. The spatial resolution is 128 grid points, the time step is 

At = 2-10"5. 
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Figure 6. The upper panel shows the horizontally averaged salinity and temperature profiles 
of the steady solution of the equations (9).   The parameters are RT = 1000, Rs = 666, 
T = 1/3. The vertical resolution is 128 grid points and the time step is Ai = 2 • 10~5. 

The lower panel shows the horizontal shearing velocity U for the same run. 
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Figure 7. As in figure 6 but here is RT = 5000, Rs = 3333. 
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Double Diffusion With a Density Interface 

By Alexander Casti 

1     Introduction 

When a fluid has two constituent components diffusing at different rates, the dynamics 
can be remarkably different than those of fluids where only a single element is dif- 
fusing. In the classic Rayleigh-Benard problem of single component (heat) diffusion 
[1], an initially quiescent fluid heated from below eventually becomes buoyantly un- 
stable, resulting in a bifurcation to steady convection if the boundary conditions are 
sufficiently ideal. A doubly diffusing fluid with heat and salt can involve more com- 
plicated dynamics at onset. If the basic state is in the diffusive sense, for which heat 
is the unstably stratified component and salt the stably stratified one, the onset of 
convection can be oscillatory [2]. This happens even when the fluid's density decreases 
upward through the layer. The essential mechanism behind this lies in the differing 
rates of diffusion for heat and salt. When the fluid at the lower boundary gets too 
hot, it expands and starts to rise. After a fluid parcel has travelled upwards a while, 
it eventually diffuses away its excess heat to the surrounding, cooler fluid. Owing to 
the slower diffusion of salt, the parcel finds itself saltier and heavier than its neighbors 
and begins to sink. Eventually, it begins to feel the heat again and will expand just as 
before, and the cycle continues until nonlinear effects take control. However, the tem- 
perature field lags the displacement field, so the parcel in fact overshoots, a situation 
referred to as overstable [3]. In what follows, the slowly diffusing component will be 
referred to as "salt," and the quickly diffusing component as "heat," even though the 
only qualifications for a doubly diffusive fluid is that there be two or more components 
with differing diffusivities. 

For the purposes of this report, diffusively stratified phenomena will be classified 
according to two categories— weakly and strongly nonlinear. When a critical temper- 
ature gradient throughout the layer is slightly exceeded, the fluid is weakly nonlinear 
and begins to convect. The initial oscillatory bifurcation has been verified experimen- 
tally [4]. In contrast, a highly supercritical, strongly nonlinear thermohaline system 
will develop vigorously convecting, well-mixed layers separated by thin interfaces across 
which there are sharp gradients of heat and salt [5]. They are dubbed "diffusive in- 
terfaces" because the primary mechanism for heat and salt transport across them is 
diffusion. In the initial stages of layering, the linear, background profiles are mixed 
up and homogenized near the heated boundary, and eventually another layer develops 
on top of the thin interface, and then another layer atop of this one, and so on. This 
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phenomena is not limited to the laboratory; diffusive interfaces are observed in Antarc- 
tic lakes, the Red Sea, and in many other bodies of water [6]. One should be aware, 
however, that oceanic interfaces are a result of lateral intrusions of water, not from a 
vertically destabilizing temperature gradient. 

The primary purpose of this report is to explore the dynamics behind the breakup 
of an interface in a diffusively stratified fluid. The point of view adopted will be weakly 
nonlinear theory, so any connection to interface breakup in an actual experiment is ten- 
uous. However, it will be seen that many of the rough features of interface destruction 
can be captured by a simple model, so in that sense it is well worth exploring. For 
instance, in an experiment conducted this summer at WHOI [7], a 2-Layer fluid of 
cool, fresh water above hot, salty water was seen to evolve in the following manner: 
Initially, both layers were quiescent. As the temperature gradient was increased from 
below, convection ensued in both layers, the interface remaining fairly sharp. After a 
while, the interface began to oscillate, until eventually fluid from both layers entrained 
across the interface. After a longer period, the interface began to break up, until a 
point was reached where the salty fluid below finally punched through and obliter- 
ated the interface, leaving a one-layer, turbulently convecting fluid with a uniform salt 
distribution. An attempt is made here to capture some aspects of this phenomena 
by considering an arbitrary background salinity profile, a sharp hyberbolic tangent 
function say, and exploring the effects of a sharp gradient region in the middle of a 
two-dimensional, Boussinesq fluid. It will be assumed that the dynamics of interest 
occur on a much shorter timescale than the interface can diffuse. That is, the Lewis 
number, as defined below, will be very small. Furthermore, no consideration will be 
given -as to how the interface got there in the first place, or as to what is keeping it 
there (i.e. some sort of salinity source function). 

2     The Equations of Motion 

The following momentum, temperature, salinity, state, and mass continuity equations 
for a Boussinesq fluid will be used throughout: 

dtu + u-Vu   =   -—Vp-^-z + vV2u (1) 
Po Po 

dtT + u-VT = KrV2T (2) 

dtS + u-VS = /csV25 (3) 

p = p0(l-a(T-T0) + ß{S-S0)) (4) 

V-u = 0, (5) 

where u = (u, w) is the velocity, g the gravitational acceleration, p the pressure, v the 
molecular viscosity, T the temperature, S the salinity, a > 0 the coefficient of thermal 
expansion, ß > 0 the coefficient of salt expansion, and p0, T0, and 50 reference density, 
temperature, and salinity values.   The thickness of the layer will be denoted by d. 
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Employ the following non-dimensionalizations, where tilde denotes a non-dimensional 
variable: 

Upon dropping the tilde notation, taking the curl of (1), and defining the streamfunc- 
tion u = (-dzip,dxij>), we are left with the following non-dimensionalized vorticity, 
heat, and salt equations: 

(j-^VV - VV - RTdJ + RsdxS   =   -j(^,Vfy) (7) 

dt9-V29-dx^   =   -J{ij>,9) (8) 

dtS-rV2S   =   -Jty,S), (9) 

where RT = &£££ is the thermal Rayleigh number, Rs = ^£ is the saJt Raywh 

number, a = -f- the Prandtl number, r = ^- the Lewis number, and J(f,g) = 

dxfdzg — dzfdxg is the Jacobian derivative. In many situations of interest r is very 
small; for instance, r = ^ for water. Note that in equation (8), the temperature 

has been written T = Th + 9, where §■ = -1, and that AT and AS measure the 
temperature and salinity deviations from their reference values. For a sharp hyberbolic 
tangent profile 5&=-tanh(bz), AS measures the salinity jump through the middle of 
the layer. 

3    First Model: A Salinity Step Function 

3.1     Forumlation of the Problem 

As a first attempt to form a simple model of doubly diffusive interface dynamics, 
consider a step-function salinity profile 

Sb(x,z,t) = l-H(z-Ti(x,t)) (10) 

*(*-*(*,*)) = { J; Zl <n> 
Since the notion of an interface that is diffusing is somewhat dubious, set r = 0 and feed 
equation(lO) into (7), and ignore the salt equation (9) since the salt is a passive tracer. 
The variable 77 represents the height of the interface above its equilibrium position at 
z=0. The general scenario is sketched in figure (1). In order to deal with an interface 
with a density jump, we need to define jump conditions normal to the interface. The 
normal and tangential vectors to the interface are defined by 

n   = \        (-0^,1)* (12) 

I     X       Al,dxri)K (13) 
V7! + for,)2 
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Figure 1: Discontinuous Salinity Profile With a Jump At z=0 

The appropriate jump conditions for a fluid of identical material properties with no 
surface tension at the interface are [8] 

dtT] - dzibdxri + dx^dzr] = dxip 

[-dzti] = 0 
[dxrj>] = 0 

[t-T-n] = 0 

(kinematic condition) 

(horizontal velocity) 

(vertical velocity) 

(lateral stress) 

(14) 

(15) 

(16) 

(17) 

[6]   =   0 (temperature) 

[n-VÖ]    =   0 (heat flux), 

Rsdxrj        (vorticityjump)        (18) 

(19) 

(20) 

where [•] denotes the normal jump of a quantity, T is the viscous stress tensor for 

an incompressible fluid Ta = -pSij + fi (Jj + fj-), \t the dynamic viscosity, dn the 
normal derivative to the interface, and Sij the Kronecker delta function. 

3.2    The Linear Problem 
The equations of motion and the interface conditions linearized about the z = 0 refer- 
ence state are as follows: 

dtej-'S/Hj-d^j = o 
dtr] = dxipj 

[-dzti>] = o 

M = 0 
%* =   0 

dlib\   =   RsdxV 

[9]   =   0 

[dzB]   =   0, 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 

(28) 

(29) 
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where j = a,b denotes the "above" layer and the "below" layer. Equations- (21)- 
(29) must be solved in each layer for some set of boundary conditions at z = ±|. 
Note that the only boundary condition in the linear problem that makes the situation 
non-trivial is the jump condition (27). If Rs = 0, then we simply have two Rayleigh- 
Benard problems stacked upon one another, and the eigenvalue problem should recover 
a critical thermal Rayleigh number of 16 times the usual critical Rayleigh number in 
this limit (take d —> |, AT —> ^-). Now, decompose the field variables into the usual 
normal modes 

/   V>7    \ /   1>i(z)   \ 
<,'*«+»« + c.c. (30) 

One could plow through the algebra and solve the eigenvalue problem, but the easiest 
way to proceed is simply to hunt through parameter space and search for marginal 
eigenvalues s, with $Z.(s) = 0, on a computer using a shooting method. For both rigid 
and stress free boundary conditions at the top and bottom, and fixed temperature, 
it turns out that there are no steady bifurcations other than 2-layer convection. It is 
easy to see why when one writes out (27) and substitutes for r\ using (23). Interface 
condition (27) then becomes 

3&SJ> = sd3
zhi> - k2Rsi>h. ■   (31) 

Thus, if s = 0 is to be an eigenvalue, (31) demands that tpi = 0 at the boundary, 
i.e. the vertical velocity must vanish at the interface! This means that no matter how 
small Rs is, we will always have 2-Layer convection at marginality This is contrary to 
physical intuition, which would suggest that if Rs is extremely small, the fluid would 
not feel the salinity jump at z = 0, and normal, full layer Rayleigh-Benard convection 
would ensue. Clearly then, too much has been stripped out of the model. The fluid 
feels an essentially impenetrable barrier! One might understand this better if the salt 
Rayleigh number, which scales proportional to the AS jump across the interface, is 
written as 

Rs = ^LJz—, (32) 

where ^- is the salt gradient through the interface. Since -£ is infinite in this problem, 
both layers see an infinite gradient at the interface. In addition to this disappointing 
result, Hopf bifurcations could not be found. In light of a desire to explore competitive 
mechansisms between 2-Layer and 1-Layer convection, this model is unsatisfactory 
since the linear problem does not allow a rich variety of marginal solutions about 
which to expand a weakly nonlinear theory. Perhaps something interesting might still 
come of it, but at this point it seems that more progress might be made by considering 
a continuous salt profile, especially since a computer is so repulsed by discontinuities. 

252 



4    Some Comments About The Linear Salt Profile 
Problem 

The diffusive problem for which the background salt profile is linear has been examined 
in great detail [9]. Returning to the full Boussinesq equations (7)-(9) and writing 

S = Sb + E,     ^=-1 (33) 
dz 

e e ifc*+stsm7rz + ex., (34) 

one can solve the linear problem and obtain the dispersion relation 

f ak2 

s3 + {a + r + l)q2s2 + I {a + r + <rr)q4 - —(i?T - RS)J s 

+ (<TTqe + <Tk2(Rs-TRT))=:0, (35) 

where' q2 = (ir2 + k2). Free slip, fixed temperature boundary conditions have been 
assumed. Among the myriad of interesting results, one can deduce from (35) that 
oscillatory convection corresponds to the lowest critical RT provided Rs is large enough 
(or, equivalently, r is small enough). That is, the stabilizing salt field must be strong 
enough to sustain oscillations. It is interesting that no matter how small Rs may be, 
one can always choose a small enough Lewis number r such that the Hopf bifurcation 
will be the first. From (35), one can also derive the following marginality relations: 

RSteady =  Ä*  + |! (36) 
T       kz 

R°SC = J^TRs + C1 + T)(! + °~
XT
^ (37) 

u? = (CTT + <T + r)q4 - a(RT - Rs)-, (38) 
\2 

where CJ2- is the frequency of the Hopf mode should it occur, and R^ea v and R^sc 

are the critical Rayleigh numbers for a given mode with wavenumber k to become 
marginal to steady convection and oscillatory convection, respectively. From a mathe- 
matical viewpoint, a curious feature of the marginality curves is that when Hopf modes 
are present, the Hopf branch always intersects the steady branch at two points for fixed 
i?5, r, and a. These points of intersection, commonly referred to as Takens-Bogdanov 
codimension-2 points [10], correspond to the simultaneous onset of steady and oscilla- 
tory convection. They are of special interest since they provide a natural location in 
parameter space at which to investigate the competing effects of steady, overturning 
convection and any oscillations that might occur in the system. A noteworthy feature 
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is that for fixed Rs, the oscillatory branch can be made to disappear.   In fact, for 

Rs < R-snt = \&(i-l) ■> the Hopf branch does not exist. As r is varied appropriately, 
the two Takens-Bogdanov points merge at the minimum of the steady branch. This 
is a degenerate, codimension-2 point explored elsewhere in this volume [11]. A plot of 
how these curves coalesce as r is varied is shown in figure (2). It will be of interest 
later to see how much of these results for a linear salt profile hold true for an arbitrary 
background profile Sb, with ^ < 0. 

5    Arbitrary S&(z), Small Rs limit 

We now turn to a model with an arbitrary, monotonically decreasing background salt 
field. Since some analytical progress can be made in a small Rs limit, we explore this 
first. Suppose the following expansions [12]: 

%l> = eV2 + eV4 + 
S = Sb + E0 + e2E2 + 

R   = e
4r4 + 

T = ezr, + 

i?0 = P = 
(TT

2
 + P)3 

= e2e2 + e\ + ..- 

.T -R0(l + e2p + -- •) Rr 

(39) 

(40) 

(41) 

(42) 

(43) 
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The idea of this expansion is to couple the salt field weakly to the usual Rayleigh-Benard 
convection equations, such that the lowest order problem does not involve the salinity. 
The question of interest pertains to the effect of the Sb{z) profile on convection rolls. 
For instance, can the salt field halt the overturning convection and cause the rolls to 
oscillate on a slow time scale? Note that the small amplitude expansion does not employ 
the usual Malleus-Veronis [13] scalings, since the perturbation to the thermal Rayleigh 
number scales as the stream function and temperature amplitudes. Malkus and Veronis 
used the scaling I/J = tip1 -\ , with an analagous scaling for the temperature. Thus, 
the convection is weaker in this small Rs limit. Upon equating e powers in equations 

(7)-(9) we find 

^)=   *,-(:!-#)($)-       (44) 

V>2 = -iA(T)eikxsin7rz + c.c. (45) 

92 = 0eA(T)eikxsin7rz + c.c. (46) 

drS0 - r2V
2E0 +Sh'dx^2 + J(^2,S0) = 0, (47) 

where 9C = \ and q2 = TT
2
 + k2. The task is now to derive an evolution equation for 

the slow-time amplitude A(T), and to couple this with (47). This is accomplished by 
applying a solvability condition at the next order. 

O(e):     £v4=l4=^ -M-JWM )'    (48) 

We now enforce a solvability constraint on (48) to remove the resonant terms. To do 
this, we need to define the matrix equation adjoint to £: 

Adjoint Equation :        £+vad = ( "^   _^2 ) ( ^ ) = 0 (49) 

i'a.d = i^e^sinxz + c.c. (50) 

9ad = Öaeikxsin7rz + c.c, (51) 

where tpa = k and 9a = ^-p2-. The solvability conditon at this order is defined by 

(vad,l4) = ^~r fdzdx v*l4 = 0, (52) 
ZTTJO     Jo 

where the superscript H denotes the Hermitian conjugate transpose. Application of 
the solvability constraint (52) yields the evolution equation for A(T) 

drA - fiA + rik-^ad, &So) = 0 (53) 

<j+l q2(cr + l) 
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The task at hand is to analyze the following, coupled equations: 

dTA-fiA + r(k-l^ad,dxEo) = 0 (55) 

3TEO-T2V
2
EO-7(Z)^2 + J(^2,£0) = 0   , _  (56) 

where ■j(z) = —Sb- Note that 7 = 1 recovers the case of the linear profile, and that 
il>ad is given by (50) and ^2 by (45). 

5.1 Linearized Amplitude Equation 

Consider the linearized version of (56) by ignoring the Jacobian term. If we write 

S0=B(r)eita4(z) + c.c, (57) 

we have 

AT-fiA + r{-ie-^smTrz + c.c.JikB{T)etkxS0{z) + c.c.)    =   0 (58) 

BTS0(z)-kA7smirz-T2B(d*S0-k2S0)   =   0. (59) 

There is a nice trick that allows one to solve these equations. Take (59) and apply the 
operator (sin7rz, •), and integrate the diffusion term by parts, making use of fixed salt 
boundary conditions and the equation 

SB=0, 2 = 0,1. (60) 

Applying this operation reduces (58) and (59) to 

AT-fiA + krB   =   0 (61) 

BT-UA + q2T2B   =   0, (62) 

where we have chosen the normalization and defined J by 

I0 = J dz sinTrz S0 = 1 (63) 

J =      dzj sin27rz. (64) 

Note that all of the information about the basic state salinity profile is buried within 
the parameter J. 

5.2 Takens-Bogdanov Point 

Just as in the linear salt profile case, equations (61) and (62) have Takens-Bogdanov 
bifurcation points. To see this, write 

A)_     Ae 

B B. 
e sT + ex. (65) 
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to derive the dispersion relation 

s2 + [r2q
2 -n)s+ (rk2J - m\) = 0. (66) 

There are some important things to take notice of in equation (66). First, it is a 
second order equation, which means that our center manifold projection has resulted 
in a dispersion relation one order lower than the usual third order equation. This is 
essentially a reflection of the lowest order decoupling of the salt field. Also, we will see 
later that higher order terms in the expansion, particularly the terms that generate a 
mean temperature field by the perturbations, are crucial to the stability of the system. 
Second, there would be no non-trivial, steady solutions to (66) without the diffusion 
term, which means that a model that neglected the diffusion in this limit would almost 
certainly be unstable. Third, there are no marginal, oscillatory solutions. Despite 
the latter, unpleasant feature, there are still Takens-Bogdanov points defined by the 
parameter relations 

fi = T2q
2     ,      rk2J = fiq2r2. (67) 

One of the more interesting features of this analysis is that the dynamics seem relatively 
insensitive to the basic state salinity profile used! All that the parameter J contributes 
is a multiplicative factor to the displacement of the marginal stability curve for steady 
modes. The steady branch is now defined by 

ßSteady = ^ + £2  f^A  ? (68) 

and since J > 0 the effect of the background salt profile is fairly trivial. The bifurcation 
is still supercritical, so long as Sb is a monotonically decreasing function and r4 > 0. We 
will now proceed to build upon the linear analysis by unfolding the Takens-Bogdanov 
bifurcation. Will the nonlinear terms quash the linear instability? 

5.3    Unfolding The Takens-Bogdanov Bifurcation 

Let us now investigate the stability of the steady solutions defined by rk2J = fiq2r2. 
To do so, expand (55) and (56) about the Takens-Bogdanov point using the following 
perturbation scheme: 

A = eA1+e2A2 + --- , E0 = eS, + e2S2 + ■ ■ ■ (69) 

r = r0 + erx + e2r2 + • • • . r2 = r20 + er21 + e2r22 + • • • (70) 

T = eT, ^ dT ^ edTl. (71) 

5.3.1     Order e 

At O(e), we recover the linear problem 

-liA.+roik-^dxS,)    =   0 (72) 

-Tfc^e^sinTTz + c.c^-r^V2^    =   0. (73) 
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Now employ the same solvability trick as before and write 

S^jy^OO + cx. (74) 

Upon projection of (73) onto sinTZ, the resulting equations are 

-fiA, + krol,    =   0 •   (75) 

-kJA.+T^I,   =   0 (76) 

5a   — k2S1    = 7sin7rz (77) 
.       00 

I^T)   =   B.iT)!1 dzsmKz$,=B,(T)I0, (78) 
JO 

where ' = £. We will identify Bl = Ax, and though the introduction of the Ix (T) term 
is somewhat pedantic, it helps to flesh out the nature of the codimension-2 expansion. 
Also note that I0 will not be normalized to unity, and by making use of (77), one can 
show that I0 — ^~. A solvability constraint for non-trivial solutions of (75), (76) yields 
the parameter relations that put us at the Takens-Bogdanov(TB) point: 

V-   =   r00q
2 (79) 

ixrmq2   =    k2Jr0. (80) 

5.3.2    Order e2 

Here we have 

-liA2+r0{k-
libad,dxS2)   =   -n^-Va^a^-drA (81) 

-7A:(4e^sin7rZ + c.c.)-r00V
252    =   -d^S, + r„ V25, 

-«/(-iV'^sinxz + cc^S,).      (82) 

Upon projecting (82) onto eifcxsin7rz we have 

-pA2 + kr0I2   =   -rlkIQA,-dTlA1 (83) 

-UA2+r00q
2I2   =   -r^A.-I^A,. (84) 

A more illuminating expression of these equations is 

The relations det(A4) = 0 and Tr(M) - 0 are the TB conditions.   At this stage 
one needs to define the matrix adjoint problem to (85).   It is good enough to define 
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the adjoint eigenvectors, since at each epsilon power the solvability condition will be 
e^ • R. = 0, where e^ is an adjoint nullvector, and R. is the right hand side column 
vector, after projection, at each order j. Choose the following set of eigenvectors and 
their adjoints: 

elM=0   ,   ei=(-^y. (89) 

Applying solvability to (86), which ensures that the right side of (86) has no component 
in the space of the generalized eigenvector e2, yields the following constraint between 
the unfolding parameters ru and r\. 

We will need a particular solution to equations (81),(82) before proceeding. Homoge- 
neous solutions are ignored since they will be non-resonant at the next order. After a 
bit of effort, this solution can be written 

S2   =   SW + SÜ + S® (91) 

Sj°>   =   KI2A0(z) (92) 

SW    =    lA2-hLA\sie
ikx + ~dTlA1^(z)eikx + c.c. (93) 

S(2)   =   A.V^A^ + c.c.     . (94) 

A2   =   ÜAi + ^drA, (95) 

where the set of A.'s (j = 0,1,2) satisfy the following differential equations: 

A0"   =   — (sinTTzS,)' (96)' 

A,"-PA,   =   S, (97) 

A2" - 4&2A2   =   — (sinTrzS; - XCOSTTZ^') (98) 
''oo 

A,.   =   0, z = 0,l. (99) 

5.3.3    Order e3 , Amplitude Equation 

The equations at this order are 
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-/j,A3 + r0{k-ltl?ad, dxS3)   =   -dTlA2 - ^(fc-Vad, dxS2) 

-r2{k-lipad,dsS1) (100) 

-7^A3e^sin7rz +c.c.)-r00V
25;    =   -drA + rn V2S2 + r^V2^ 

- J (-zAje^sinxz + c.c, S2) 

-J (-iA2e
ikxsmTZ + c.c, S,) .    (101) 

Applying solvability and the maxim that patience is a virtue, one finds the amplitude 
equation 

d\ A, + adT, A.+bA^cl A |2 A,, (102) 

where the real coefficients are defined by 

a   =    — (1 - AO + - {fi + kr0I0 - ixrj0) (103) 
To rQ ' 

c   =    kr0 (Ia + Ib + 2TTIC) (105) 

Ia   =    J   dz sin27rzA0' > 0 (106) 

Ib   =    j dz sin27rzA2' > 0 (107) 

1   fl 

■Ic   =    -      dz sin27rzA2 > 0. (108) 

5.4     Shortcomings of the Amplitude Equation 

Equation (102) is unsatisfactory for a variety of reasons. First, there are no oscillatory 
solutions, so the rolls cannot oscillate,, whatever the background salt profile. Second, 
all steady solutions are unstable. In this limit, the salt is impotent and cannot stifle the 
runaway growth of the convective cells; the salt field just goes along for the ride until 
it is completely mixed up by the convection. In retrospect, one can trace the runaway 
growth to the absence of a mean temperature field that is generated at higher order by 
the perturbations. This mean temperature field is the culprit that typically saturates 
the growth of the convection [13]. In the language of amplitude equations, the mean 
temperature field manifests itself as a cubic nonlinearity with a negative coefficient. 
But do not be misled— this term is contained within the small Rs expansion used here, 
but we have not gone to high enough order to see it. If we reconstitute the equations, 
or do a Galerkin projection, we could bring it back in. However, in this scaling a 
damping, nonlinear term would be asymptotically small compared to the lower order 
terms, so one cannot say that these terms would squelch the growth of the rolls and at 
the same time claim that the results are asymptotic. Some other perturbative scheme 
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would have to be employed to achieve this. One possibility is to treat the equations 
as a boundary layer problem [15], and assume that all of the salt is confined to a thin 
layer, similar to the approach taken by Proctor [14] in his study of steady, subcritical 
thermohaline convection. A scheme that brings in the damping nonlinearities and 
retains an arbitrary salt profile in a thin boundary remains as future work. 

Another way to understand what happened in this expansion is to consider the nor- 
mal form equations for a Takens-Bogdanov bifurcation in a system with translational 
and reflectional symmetry, i.e. a system with 0(2) symmetry. The doubly-diffusive 
Boussinesq equations have the 0(2) symmetry, so we can consult the work of Dangel- 
mayr and Knobloch [16] and write down the normal form equations immediately: 

dtB   =   A 

" dtA   =   fxB + uA+(e\B\2+f\A\2+g(BÄ + c.c.))B + h\B\2 A.   (109) 

In the context of the small Rs amplitude equation (102), the normal form tells us 
that our coefficients /,#, h are all zero. Thus, the small Rs expansion has picked out 
a highly degenerate Takens-Bogdanov point, a point at which no oscillatory solutions 
exist. The degeneracy of the TB expansion here is a direct result of all the physics 
we have thrown out by looking at such a weak salt coupling to the Rayleigh-Benard 
convection. If we had launched our analysis from the Takens-Bogdanov point on the 
original, microscopic equations, we would have picked up the missing terms from the 
normal form (109) and obtained oscillatory solutions. In addition, we would obtain a 
cubic nonlinearity with a negative coefficient, which is necessary for the saturation of 
the steady solutions. As is outlined in [11], however, it is not clear how to bring in the 
presently missing normal form terms in an asymptotically valid way. They will still 
be of higher order than the terms in equation (102). Still, it is noteworthy that an 
arbitrary, monotonically decreasing salt profile has such a negligible effect, even if this 
limit of small Rs is restrictive. 

6    Numerics for the Linear Problem and Larger Rs 

Regimes 
We now turn to numerical results for some insight into what happens in a regime of 
larger Rs. All numerical work on the linearized equations (7)-(9) was done with a 
basic state Sb = —tanh(bz), where b was chosen so that the tank profile reached its 
extremal values (to within double precision) outside a thin region near the center that 
encompassed roughly twenty percent of the layer. Special care was taken to ensure 
that the sharp salinity gradient was adequately resolved by clustering points near the 
center of the layer. The background salinity profile is shown in figure (3). 

It is expected that if Rs is too large, the convection will have a difficult time 
punching through the layer. Thus, the first bifurcation (lowest RT) to a marginal 
eigenvalue should look roughly like 2-Layer convection if the Lewis number is not 
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Figure 3: Background Salt Profile Used In The Numerical Runs 

compensatingly small. It is important to be aware that for such large R^ regimes, the 
eigenfunctions are greatly distorted, so when one speaks of "2-Layer convection," it 
should be interpreted as an approximate description of the dynamical structure. 

It is observed that no matter how large Rs is, one can always tune the Lewis number 
to be so small that the first bifurcation is oscillatory, and for certain tunings a variety 
of marginal curves can collide. This is analagous to what was seen in the linear profile, 
but we shall see below that in a larger Rs regime the dynamics of modal competition 
are fundamentally different. Physically, the rough picture is that modes wanting 1- 
Layer convection and modes wanting 2-Layer convection are competing, each having 
an equal say at parameter values corresponding to a resonance. Since the latter type 
of dynamics is suggestive of an interface on the verge of destruction, let us concentrate 
on this. 

6.1     1:1 Resonance 

When a system is said to have a 1:1 Resonance [17], it means that two modes of 
the same wavelength are competing at marginality. In terms of the linear dynamics, it 
manifests itself as a collision of the neutral curves, whereby they get closer and closer as 
certain parameters are tuned. In this case, the NRK (Newton-Raphson-Kantorovich) • 
solver used here [18] shows that for a fixed Rs (10000 for the figures below), one can 
tweak the Lewis number so that two steady branches collide and pinch off, ultimately 
connected by a Hopf branch. This is the paradigm of 1:1 resonance, as is sketched in 
figure (4). 

Some numerical runs are presented in figure (5). This figure shows two steady 
branches, the higher one corresponding to 1-Layer tendencies and the lower one to 
2-Layer tendencies, each connected by a dotted Hopf branch. As r is increased from 
0.3 to 0.6, the curves collide and pinch off. The left branch shot off to infinity and 
could not be latched onto in the numerical runs performed.  This run is presented in 
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Figure 4:  1:1 Resonance and the pinching off of marginal curves. 

figure (6). The eigenfunctions of the veriticai velocity, temperature, and salinity for 
the upper and lower steady branches are plotted in figures (7) and (8). 

6.2     Normal Forms For a 1:1 Resonance 

Given a 1:1 resonance in a system with 0(2) symmetry, we can write down the normal 
form amplitude equations immediately [17]. With A and B corresponding to the two 
competing modes of nearly equal wavelength we have 

dtA   =   fiA + xB-(al\A \2 +h | B |2 +c1Aß) A 

-(h\A |2 +o2 | B }2 +c2ÄB) B 

dtB   =   vB + XA - (o4 | A |2 +b4 \ B |2 +c4Aß) A 

-(h\A I2 +az | B |2 +c3ÄB) B, (110) 

where the set of coefficients {a,-, &,-,c;} are parameter dependent functions to be de- 
termined according to the particular problem. To obtain the coefficients, one must 
perform a center manifold reduction on the system. However, many things can be said 
from knowing the normal form. Among the most interesting is that resonant phase 
interactions manifest themselves in the linear terms, so it is possible for the basic state 
solution to switch from a steady bifurcation to a Hopf bifurcation at the point of reso- 
nance. If the resonance was weaker [17]. a 1:2 resonance for instance, there is no phase 
coupling at lowest order, and the phase of either mode remains undetermined in the 
weakly nonlinear limit. To ascertain what types of solutions are dynamically preferable 
at any point in parameter space, the specific coefficients of (110) must be worked out, 
which is a matter left for future work. 
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7 Discussion 

We have seen that a doubly-diffusive fluid with a sharp gradient region in the more 
slowly diffusing component can exhibit fundamentally different behaivor than the well 
studied linear salt profile scenario. Though the actual laboratory experiments to date 
involve highly nonlinear processes, 1:1 resonant interaction of modes favoring 1-Layer 
convection and 2-Layer convection appears worthy of further study as a paradigm for 
interfäcial obliteration in fluids amenable to weakly nonlinear analysis. Whether this 
situation is realizable in a geophysical or laboratory context is unknown to the author at 
this time. In a small Rs limit with an arbitrary, monotonically decreasing background 
salt profile, it was seen that unless mean temperature field effects generated by the 
perturbations are accounted for, the salt is unable to influence the runaway growth of 
full layer convection. Work currently in progress involves bringing in these saturating 
effects in such a way that an arbitrary background salt field can be retained, so that the 
effects of a sharp gradient region can be more thoroughly investigated. One possibility 
is to return to the classic scalings of Malkus and Veronis, while confining the salt to a 
thin boundary layer so that a similar analysis to that of section 5 is applicable. In this 
case, however, it is hoped that parameter dependences can be introduced into the cubic 
term of the amplitude equation (102) so that a Takens-Bogdanov analysis captures a 
richer spectrum of solutions than allowed in the present work. 
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Long-wave Instability in Double-diffusive 
Marangoni Convection 

Jean-Luc Thiffeault 

1 Introduction 

In fluid convection with a free surface at the top it is sometimes the case that surface 
tension effects become important. For instance in conditions of microgravity (e.g. crys- 
tal growth in a space shuttle when a free surface is present) the gravitational forces 
are negligible [1, 2]; Or, as in Benard's original experiments, the layer of fluid is very 
thin and the convection is surface-tension dominated [3, 4]. We consider here the case 
of two diffusing quantities (for convenience referred to as heat and salt) with those 
surface tension effects taken into account. We shall be particularly interested in the 
diffusive regime where overstability occurs. We will derive a small amplitude long-wave 
planform equation for the case where fixed fluxes of heat and salt are imposed at the 
top and bottom boundaries, and find a long-wave equation capturing the bifurcation 
structure of a codimension two Takens-Bogdanov point. We discuss the possibility of 
capturing a larger portion of the bifurcation by adding surface deformation effects to 
tune out resonant nonlinear terms. 

2 Governing Equations of the System 

The equations describing the temporal evolution of the system are the usual ones for 
two-dimensional thermohaline convection in the Boussinesq approximation: 

i(0tV
2tf + {tf,V2#})   =   Är&tf-Äs&tf + V4* (1) 

dtT+{$,T}   =   dxV + V2T (2) 

dtS + {V,S}   =   dxV + rV2S. (3) 

Here * is the stream function, T is the temperature, and S is the salinity. Both T 
and S are deviations from linear profiles. The dimensionless constants used are the 
temperature and salt Rayleigh numbers 

*_*££,     *.!&*, (4) 
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and the Prandtl and Schmidt numbers 

a = —,     r = —, (5) 

where x is the horizontal direction, z the vertical, g is the acceleration due to gravity, a 
and ß are the coefficients of thermal expansions for the heat and salt, Tz and Sz are 
the mean gradients of heat and salt, d is the vertical thickness of the fluid layer, v is 
the viscosity of the fluid, KT and KS are the coefficients of heat and salt diffusion. The 
Jacobian is 

{F,G} = dxFdzG-dxGdzF. (6) 

The problem was nondimensionalised so that t ~ CP/KT, X, Z ~ d, T ~ Tzd, S ~ Szd. 
When surface tension effects are not present, for Rr < 0 and Rs < 0 the system is 
in the fingering regime, whereas for RT > 0 and Rs > 0 the system is in the diffusive 
regime. The onset of instability for the fingering regime is direct, and for the diffusive 
case it is oscillatory (overstability) [5]. 

The difference between normal thermohaline convection and its Marangoni coun- 
terpart comes from the boundary conditions. We consider an infinite layer of fluid 
bounded above and below. At the bottom of the fluid there is a rigid plate with fixed 
flux boundary conditions on the heat and salt: 

\& = dzV = dzT = dzS = 0,   z = 0, (7) 

whereas at the top there is a free surface having a surface tension with a linear temper- 
ature and salinity dependence 

a = cr0- 7T(T - T0) - 75(5 - So), (8) 

so that there is a stress exerted at the top of the fluid [6, 7]. The boundary conditions 
at the top surface are thus 

*   =   dzT = dzS = 0, 

V2tf   =   MTdxT + MsdxS,     z = l, (9) 

where the temperature and salinity Marangoni numbers are defined as 

MT = Ä,    MS = ^, (10) 
puKr puKr 

and p is the density of the fluid. The quantities 7^5 can have either sign depending on 
the diffusing components, and in particular for the heat-salt system 

7r = 0.157 dyn cm-1 K_1,    75 = -0.367 dyn cm-1 wt%_1. (11) 

We neglect here possible deformation of the surface (for inclusion of this effect see [8, 
9, 10, 11]). At lowest order there it is possible to use the crispation number to take 
surface deformation effects into account, which leads to a long wave instability. We also 
find such instabilities here, but as a result of the fixed heat and salt flux condition in 
Eqs. 7 and 9, which distinguishes this work from previous ones. [6, 12] as 
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3    Linear Stability 

The system of equations 1-3 can be written with a linear and a nonlinear part 

£*=A/"(#,tf), (12) 

where the state vector is 

the linear operator is given by 

* = 
( * "1 

T 
S 

(13) 

f v*-±dtv
2   RTdx    -Rsdx  ) 

dx       v
2-dt      o 

dx 0 rv2-at 

(14) 

and the nonlinear terms by 

M(V,9) 
{V,S} 

(15) 

We now look at the linear problem. The nonlinear terms M drop out and we can focus 
our attention on only one Fourier mode in the x direction with wavenumber a, so we 
write . 

-ie±(z) 
-iE±(z) 

where we separate the x and z dependence and in doing so define the complex func- 
tions ip, ©, and S. We have set the real part of the time dependence to zero to look for 
marginal modes. We then have to solve the linear set of equations 

^ = A ei(ax±ü,t) + C.C. (16) 

{{& w. 
a2)Ti-)(D2-a?)4>±   =   -oÄre± + aÄsi:± 

((D2-a2)Tioj)e± 

(r(D2-a2)Ti^)S± 

aip± 

(17) 

(18) 

(19) 

We vary a and solve numerically for RT and w using a code written by N. Baker 
and D. Moore implementing the Newton-Raphson-Kantorovich method. The marginal 
stability curve and Hopf frequency plotted against a are shown in Figure 1 for the 
diffusive case (RT > 0, Rs > 0). There is an instability at a = 0, corresponding to the 
diffusive instability. There is also another instability at nonzero a, a mode driven by 
surface tension. It can be seen from the figure that by varying parameters it is possible 
for these two instabilities to come in at the same critical Rayleigh number RTc. 
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Figure 1: Marginal stability curve (a) and Hopf frequency (b) for the diffusive case. 
MT = 300 represents the case for which both the a = 0 (double-diffusive) and nonzero a 
(surface tension) instabilities linearly come in together. 

The density ratio Rp is defined to be the density gradient of the stabilizing compon- 
ent over the destabilizing one, which for the diffusive case is 

„       ßSz      Rs 
K-o — —=~ = 

OLT, RI 
(20) 

All the curves in Figure 1 have Rp > 1 and correspond therefore to statically stable 
situations in the absence of surface tension. 

4    Finite Wavenumber Instability 

Figure 2 shows the eigenfunctions of the system for the solid line in Figure 1. Note the 
real part of the salinity eigenfunction has an extremum below 2 = 1. This may be due 
to the much lower diffusivity of salt. 

Some idea of the development of the instability at finite wavenumber may be gained 
by the usual kind of weakly nonlinear theory. This must be done numerically, at least 
partly, for this instability and requires us to evaluate the adjoint to the linear system 
Eqs. 17-19. We mention here that the equations for the adjoint problem for this system 
are straightforward to obtain. Specifically, one just takes the transpose of the matrix 
Eq. 14 and let dx -¥ —dx and dt -> — dt. However, a complication arises because of the 
surface terms when one writes 

/V 
Jo 

C&dz — surface terms + f £f*f* 
./o 

dz; (21) 

272 



O.B - 

0.6 - 

N 

0.4  - 

0.2 

—r—i—r H |   i   i  r i  | i   i   i 

' \                               1" 
\                           / 

- 
\                 /   ~ 

: 
\           /       ' 

\     / 

- 

- // 
— // 
■ // 

// 

-    i "" 
■    1 

" 

1 
, I 1    1    1     1     1    I    t    1    1 ..!_!_ 

0.8 - 

0.6 - 

s 

0.4  - 

0.2 - 

1 p r— V«1 1  '  ' 1 i ■ 

" / 
'( 
" \ 

\ 
\ 
\ " \ — 

\       / 
" \   / 
_ y . 
_ - 
- /i - 
- i - 
- i - 
- / 

_ 

- // ■ 

■ ■ 

'   • i 11 > i i > i i i i 

0 10-»     2x10-«  3x10-» -2x10-«    0     2xl0~*4xl0-* 

0 E 

Figure 2: Linear eigenfunctions of ip, 6, and E at the a = 2.5 minimum of the solid 
curve (MT = 300) in Figure 1. The solid line is the real part and the dashed line the 
imaginary part. The Hopf frequency is w = 14.1. 

We will not show this in detail here, but in order for the surface terms to vanish, one 
must take for the boundary conditions on the adjoint 

& = D& = DT* = D& = 0,     2 = 0, (22) 

at the bottom surface and 

*f   =   0, 

DT*   =   MTdxD&, 

DS*   =   MsdxDV\     2 = 1, 

at the top. 
We can then use the solution to the adjoint problem to derive an amplitude equation 

for the nonzero a instability, calculating the coefficients numerically. This equation 
is valid for cases like the dotted curve (MT = 350) in Figure 1, where the nonzero 
wavenumber instability occurs at a smaller thermal Rayleigh number. The amplitude 
equation obtained is, as expected, a complex Ginzburg-Landau equation: 

dr A = oi A + a2 AXx - 03 \A\2A. (23) 

The analysis of this equation, and its coupling with an equation for the long-wave 
instability, will be the topic of later work. 
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5    Long-Wave Expansion 

We now focus our attention on the instability at a = 0 of the kind seen in Figure 1. 
We shall assume we are in a parameter range such that the marginal stability curve 
looks like the dashed line (MT = 250) in Figure 1, so that the long wave mode goes 
unstable before the surface-tension driven instability at nonzero a. In the usual manner 
we assume that there is an expansion in a small parameter e for the spatial and temporal 
dependence [13] 

dx   =   el'2dx, 

(24) 

The absence of a zeroth order x derivative reflects the fact that this instability occurs 
at a = 0. We define <j> by 

ip(z)=sV2<t>x(z), (25) 

so that all the equations contain only integer powers of e. The remaining variables are 
also expanded in powers of e, assuming their amplitudes are small: 

<P(X,z,T1,T2) = e4>1+e2<l>2 + .-- 
T(X,z,T1,T2) = £r1 + £2r2 + ... 

S(X,z,T1,T2) = eS1+e2S2 + ..., 

and the control parameters 

Rs 
MT 

Ms 

— -Rro "I" £ RT\ + £ R-T2 + • • 

= Rso+eRsi + e2Rs2 + .. 
= MTO + £ MTi + e2 MT2 + 

= MSo + eMSl+£2Ms2 + - 

We choose not to expand r and a. The operators £ and the nonlinear terms A/" also 
have an expansion 

C   =   C0 + e£1 + e2£2 + ... 

M  =  e2Ar2 + e3M + ..., 
(26) 

(27) 

where 

Co   = 

A   = 

*dx Rrodx —Rsodx 
0 D2 0 
0 0 D2 

2D29x - a-l&rx D
2dx     Rridx 

d2
x efx-^ 

d2
x 0 

—Rsidx 
0 

r&x-dr, 
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-RS2&X 
0 

-fb2 

£2   = 0 -&r2 

0 0 
V 

' ^((ßoxxD^ox - D<j>oxD2<j>oxx) ) 
Af2   = (ßoxxDQo - D(f>ox&ox 

(ßoxxD^o — D<f>ox^>ox 

' a-\<l>oxxD3<t>ix ~ Dtktx&faxx + <t>ixxD3fox ~ D<f>lxD2(t>oxx) ' 
JV3   = <f>oxxDGi-D<j>ox®ix + <t>ixxDe0-D<l>ix6ox 

<I>OXXD3JI - D(f>ox^ix + <f>ixxDT,0 - Dfax^ox 

where we are using a slightly modified state vector with <f> in the first slot instead of ip- 

$(X,z,T1,T2)=     0     . (28) 
Is J 

The boundary conditions at the bottom rigid surface are 

fa = D 4>x = DQ = £>E = 0,    z = 0; 

and at the top surface 

<px = DQ = DZ = 0, 

(29) 

D24>x = MTQx + Ms Ex,     3 = 1; (30) 

where the last boundary condition is different at each order since there is an expansion 
for MT and Ms- 

For the case of fixed flux boundary conditions the solvability condition at each order 
is simply 

f1 D2B dz= f\ £>2E dz = 0. (31) 
Jo JO 

We are now ready to proceed with the expansion. 

5.1    Order e° 

The zeroth order equations are simply C0 $0 = 0; 

D <f>ox   —   —RTO ®OX + Rso Eox> 

D2GQ   =   0, 
r£>2E0   =   0. 

The 60 and E0 equations together with the boundary conditions tell us that these two 
quantities are independent of z. Hence we can integrate the first equation four times 
and solve for fox, which after applying the boundary conditions becomes 

^   =   *V ~ V [((3 _ 2z)RT0 + l2MT0)e0X - ((3 - 2z)RSo - 12M50)E0x] , 

=   -M3)e0x + Mz)Sox, (32) 
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which defines bro(z) and bso(z). The solvability condition is automatically satisfied at 
this order, since the right-hand-side of the temperature and salinity equations vanishes. 

5.2    Order el 

The first order system is £0$i + A$0 
= ^: 

D <f>ix   =   —RTI ©OX + Rsi Sox — RTQ ©IX + Rso Six 
- 2D2<f>0XXX + a-^D^ox , 

D2Qi   =   -<f>oxx - ©oxx + #ri©o , 

TD
2
^   =   -foxx-rZoxx + dr^o, (33) 

where we have used the fact that DQ0 = DT,0 = 0. We integrate the 0i and Ei 
equations to get the solvability condition 

(D^x)   =   -(0oxx>-©oxx + ari©o = O, 

(TD
2
^)   =   -(0oxx>-rEoxx + 9r1So = O, (34) 

where 

{f)=ffdz. (35) 
Jo 

Using the previous order result, we have 

(<f>oxx)   =   (bso) Soxx - {bro) ©oxx ) 
_   (RS0     MS0\ fRTo,MTo\ 

- {320" in oxx" 1320+ isve°xx •       (36) 

Then we can rewrite Eq. 34 as 

M=f1-«      «">.]. (38) 
I   -(6ro>    T + (&SO) J v   7 

Now assume M has a complex eigenvalues A±. Then the solution to Eq. 37 is that the 
linear combinations of 0O and 20 along the eigenvectors of M (call them 6±) evolve as 

e±(X,TuT2) = eQX+x±a2T>e±(T2), (39) 

where a is a constant. We require that the real part of A± vanish to avoid exponentially 
growing or decaying solutions at this order. If we assume that the A± are real and that 
only A+ vanishes, then we have a steady bifurcation; continuing with the long-wave 
expansion then leads to an equation as in [17].   If the imaginary part of A± does 
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not vanish, we get a diffusive-type linear O.D.E., thereby fixing the X dependence 
of 60 and E0. Thus we need to introduce another, longer length scale in order to get a 
partial differential equation and in the end we get a complex Ginzburg-Landau equation. 
This calculation simply amounts to rescaling the problem and doing an expansion like 
that in Section 4. Both the oscillatory and steady instabilities can be captured in a 
single long-wave equation if we can tune the system such that both the eigenvalues 
of M vanish in real and imaginary part. This specially tuned system corresponds 
to the Takens-Bogdanov bifurcation point, where branches of oscillatory and steady 
instabilities meet [14]. 

The tuning is achieved by imposing that M have zero eigenvalues, i.e.   that its 
determinant and trace vanish: 

T (1 - ftro» + <W = 0,      (bso) ~ <W + r + 1 = 0. (40) 

The values of (&ro) and (bs0) at this point are 

(&ro) = J4T ,  <w = 3^7, (41) 

and the matrix M simplifies to 

"-M^-i)- (42) 

In terms of the physical parameters, we have 

320       20 
-Rro   =   1 Z~MTO > I — r      o 

320T2     20 „. 
Rso   =   -; + ^TMS0; 1 — r       o 

that is, the co-dimension two tuning of RT and Rs at the Takens-Bogdanov point. The 
matrix M has only one eigenvector, ex = (r 1). Any other vector is projected onto ei 
by M. We could make a coordinate transformation to put M in Jordan form 

MJi). (43) 

but we will not find it necessary to do so here. 
Thus we have 

e0 = rE0, (44) 

and the solvability condition, Eq. 37, is now just 

* {t) = °' (45) 
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It now remains for us to solve the system of equations given by 33. We can rewrite the 
solution for <f>ox as 

<t>ox = Pi(z)eox, (46) 

where 

PiW = f!^ [P - *>) (firo - ^) + 12 (Mn + ¥&)] . (47) 
Integrating the temperature and salinity equations twice and applying the fixed flux 
boundary conditions we find 

j-^w) öi = hr-pi '(*)  öOXX + OX.0 

'Z* -,(-2), rSx   =   ^y-Pr;(^)l eoxx + rS^o, 

= ei-ei,0 + T£i,o, (48) 

where the notation Pin\z) means that Pi is differentiated n times, or integrated for 
n < 0. The ^-independent quantities 6i,0 and Slj0 are integration constants that can 
depend on X and T2. The equation for <f>iX is 

'Rsi 
DA<j>lx   =   -Äroei,(Ä + Ä5oSi,o^+(-^--Äri)eoA- 

(^o_ÄTo)g_p(-2)(^_2P( 
(*) Ooxxx •        (49) 

We wish to integrate this four times and apply the boundary conditions. The calculation 
will not be shown in detail here. Instead, we write 

<ßix   =   -bro(z)elfiX + bso(z)Zhox + P2{z)eox + P3(z)e0xxx-        (50) 

5.3    Order e2 

At this order we have £o<&2 + £i$i + £2^0 = M2' 

D <j>2X     =    — RTO &2X + Rso ^>2X — RT\ &1X + Rsi ^1X 

- RT2 ©OAT + Rs2 ^>ox - 2D <j>ixxx - (ßoxxxxx + <J~ldr2D
2<i>QX 

+ cr-^fo^DZfox - D(f>oxD
2<t>oxx), 

£)202   =   -cf)lxx - Q1XX + 9r2G0 - D<f>oxQ0X, 

TZ>
2
£2   =   -<f>ixx-TEixx + &r3Ilo-D<l>oxVox. (51) 

We integrate the heat and salt equations in the usual manner to get the solvability 
conditions 

©0T2     =    (<I>1XX) + (QlXx) , 

2OT2   =   (4>ixx) + (TEIXX) , 
(52) 
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where the nonlinear terms dropped out because of the boundary conditions. We can 
rewrite this as 

(£)—(%z)+« (tz) -MM) (wx) • 
(53) 

We define X by 

T-l 
=   Si,oeiH Ae2, 

or 
X=-^-r(e1,o-TEi,o). (54) 

r — 1 

These conditions on the parameters amount to tuning the Takens-Bogdanov point at 
order e2. The solvability condition Eq. 53 can be written 

f   00T2    If   *xx    }   ,/p\f Qoxx )   ,/ p      p(-2)     £^\ f Qoxxxx ) 
{ em/r J " I Xxx/r J +<P*> { Eoxx J +\P3"^     + 2 / I Voxxxx J • 

(55) 
These two equations can only be consistent for r =£ 1 if 

<P2) = (p3 - Px(-
2> + zl\ = 0, (56) 

which means, after integrating the polynomials, 

Rs2 RT2   =   f(MT2 + ^) 
A4    ^Mso ,0(32±y/2lÖ194) 
MT0 +    =   48 — . (57) 

Then the solvability condition at this order is 

eor2=Xx*. (58) 

5.4    Order e3 

Avoiding detailed calculations, we simply quote the result for the solvability condition 
at this order1 

%T2 = —v %xx + A* QQXXXX + A Qoxx - P Xxxxx - 7 ®oxxxxxx + C (®ox)xx » $9) 
1This calculation was done on Wolfram Research's Mathematica software package. 
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where 

Ü^i(3ÄT2 + 20MT2), 

9577 (RT2T - Rsi) 
ß V  22 75600 
A   = 

MT4 r + MS4 

48 

7 

142      bJW      Mrp      y/WMTo     MTor 
P 1687      15183      90720 22680 90720         

JWMTOT      1213T      y/^r 
+      22680      + 25305 a+ 50610 a ' 

(144945779034529 + 64636181572 \/210694) 

10129277026793925 T' 

C   =    ,onnLen   (523104000a + 3766800 V210694a - 18603995 MTo a 

- 9640 V210694 Afro <r + 293982984 r + 887832 \/210694 r 

+ 18603995 Mro cr r + 9640 V210694Afro <r r). 

We have eliminated Ms0 from these coefficients by taking the positive solution of Eq. 57 
for definiteness. 

6    Analysis of the System 

Prom now on we write T for T2 and drop the subscript 0 on 0O. The system of long 
wave equations describing the small amplitude behaviour is thus 

0T   =   Xxx, 

XT   =   —u XXx + P- &xxxx + A Qxx ~ p "X-xxxx - 7 Qxxxxxx + C (®x)xx- 

This can be written as a partial differential equation, second order in time: 

©7T    =     —V QxXT - P &XXXXT + P ®(6A") + A &XXXX 

-l^sx)+aex)xxxx- (60) 
We now make a spectral expansion of the system. 

6.1    Galerkin Truncation 
We use a truncated expansion for 0: 

6 = A eiKX + Be2 iKX + c.c., (61) 
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neglecting higher harmonics. Then by using Eq. 60 we obtain a set of coupled O.D.E.'s 
for A and B: 

Ä  =   K2(v-pK2)Ä + K4(\-iiK2-iK4)A + 4CK6A*B, 

B   =   4K2 (v - 4pK2)B+ 16K*{\-4ßK2-16-yK4)B-16 CKe A2.       (62) 

Let 

a{K)   =   X-fiK2-jK4, 

ß(K)   =   u-pK2, (63) 

and abbreviate a{K) by ot\ and a(2K) by «2 (similarly for ß\ and fe).  The linear 
dispersion relation for mode j is 

rj - Kfßj Tj - Kfa = 0. (64) 

For a direct mode slightly above criticality we have F, = e <C 1, so that 

For a Hopf mode slightly above criticality, we have Tj = e + i u and 

f,  ^ = -^(1 «-Äja,    „»—Ajia + «, 

6.2    Low-order Bifurcation Structure 

We first look for steady nonlinear solutions of Eqs. 62. Assume A = B = 0. Then we 
can solve for the amplitude of A: 

N2 = -^- «*) 
We see that the mode will be supercritical if ai and «2 have opposite signs, and subcrit- 
ical if they have the same sign. The sign of £ is immaterial. This first case is illustrated 
in Figure 3. The solid line corresponds to the K = 1 mode and the dashed line is 
the K = 2 mode, which is unstable. The second case is seen in Figure 4(a). The B 
mode (solid fine) now becomes unstable before the subcritical A mode (dashed line). 
Figure 4(b) shows a plot of 0 as a function of X for different values of A along the 
subcritical dashed line of (a). It can be seen from this figure that this is a mixed mode, 
and the mode develops a higher harmonic as the unsteady branch nears the steady B 
branch. 

For a Hopf mode the amplitude and frequency are 

,   ,2   =   4KWßiß2-(^ + K^ju2 + 16ir4a2) 
11 64tf12C2 

2   =   _4Jr4"i&+4a2A 
Ä + 4&     ' 
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Figure 3: Slimmed amplitude of Fourier modes of a Galerkin truncation containing 20 
modes, for the case in which A is supercritical and B is unstable. The dynamics of the 
system are very well approximated by the two-mode truncation. 
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Figure 4: (a) Summed amplitude of Fourier modes of a Galerkin truncation containing 
30 modes, for the case in which the B mode (solid line) becomes unstable before the 
subcritical A mode (dashed line). The two mode truncation approximates the dynamics 
very well, (b) Plot of 6 as a function of X for different values of A along the subcritical 
dashed line of (a). It can be seen from this that the mode develops a higher harmonic 
as the unsteady branch nears the steady B branch, and is a pure IK mode when they 
meet. 
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The Hopf branch is supercritical if 

(ai-16ir4a2)
2 

4K2fo 
>K2a1ß2. (66) 

Now if the B mode is damped when the Hopf bifurcation for the A mode occurs («i < 0 
for Hopf), we will have a subcritical bifurcation. The question is now whether this Hopf 
branch turns around at the next order (|^4|4^4). We have not yet worked this out, though 
the author and Neil J. Balmforth have a wager on the matter. If the branch does not 
turn around it will point to the fact that the expansion only captures the lowest order 
Takens-Bogdanov bifurcation structure, a result which is expected. [15] 

After including a C exp(3iKX) term in the Galerkin expansion we find the amp- 
litude of the Hopf mode to order |^4|4i4 satisfies (letting K = 1) 

A   = MC\A\2A 
(ai -\-ißiu + u2)(a2 +4iß?u + 16u2) 

,  48-162-81C4l^|4A  
(a1+ißlw + u}2)(a2 + 4iß2cü + 16u2y(a3 + 9iß3üj + 81u2y    {   } 

The problem is that in this system there is no way to tune out the \A\2A term without 
also getting rid of the quintic nonlinearity. Hence the above equation is quite difficult 
to solve for A and u. 

7    Conclusions 

We have a derived a small amplitude long wave equation for the double-diffusive 
Marangoni convection system. The expansion contains only a quadratic nonlinear- 
ity, of a different nature than that derived by Depassier and Spiegel [16] because of 
the additional X derivative: they had a nonlinearity of the form (f2)xx, whereas we 
have {fl)xx- The nonlinear term thus has the opposite effect (stabilizing for steady 
bifurcations) on the criticality of the system, as in [17]. 

We chose a small amplitude expansion because the physical system we studied does 
not contain enough parameters to tune out the resonant nonlinearities that arise in 
the order e2 solvability condition, Eq. 55, when the physical variables are of order one. 
However, including surface displacement effects (to lowest order, crispation [6, 12]) 
should allow us to do so and capture the full bifurcation structure of the Takens- 
Bogdanov point. We expect a system of the form 

XT   =   - v XXx + V Oxxxx + A Qxx - P Xxxxx - 7 &xxxxxx + Qi (©*) Xxxx 

+ Q2(Oxx)xx + <h(®x)xx + qd®x)xxx + <ls(®x)xx 
+ <Ze(X ®xx)xx + Q7(*x Qx)Xx + ^(xx ®xx)x 
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The equation has all the terms allowed by symmetry. If the system had an additional 
up-down symmetry, only one nonlinearity with coefficient (g4) would survive. Hence the 
equations above are potentially much richer than the Boussinesq up-down symmetric 
case. We can also use planform equations like the above to look for steady nonlinear 
solutions of the system [17]. 

Another direction to explore is the interaction of the a = 0 mode with the nonzero a 
mode when they occur together, as shown by the solid line in Figure 1. There will be a 
complex Ginzburg-Landau equation like Eq. 23 for the nonzero a mode and an equation 
of the type derived here for the a = 0 mode, with a coupling between them which 
should lead to interesting dynamics (see [8, 11] for theory and [9, 10] for experiments 
concerning the steady case, Marangoni single-diffusion). Another possible system for 
the study of this sort of long and finite length scale interaction is the case of compressible 
convection [13]. 
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Linear Stability Analysis Of A Gravity 
Current Over Topography 

J. Stephens 

1     Introduction 

Here we consider gravity currents under the influence of the Earth's rotation vec- 
tor, where they may adjust geostrophically against boundaries to form a perimeter 
current, with either one or two fronts. A comprehensive review has been conducted 

by Griffiths(1986). 

Gravity currents are important for transporting heat, salt and momentum, in 
oceanic, atmospheric, and other environments. The Denmark Straits overflow for 
example, in the North Atlantic, transports significant quantities of cold water equa- 
torward, whilst the Mediterranean Undercurrent is an important source of heat and 
salt in the Eastern North Atlantic. On a smaller scale, gravity currents may be 
observed in lakes if the deformation radius is small enough that they may feel the 
earths rotation. 

A study of a 2-fronted current on a slope in a 1-layer reduced gravity system 
was considered by Griffiths, Killworth & Stem(1982), hereafter denoted GKS(1982). 
They discovered that a zero potential vorticity current was unstable to linearised 
perturbations over a finite range of wavenumbers. This range was bounded by a short 
wave cut-off at wavelengths comparable to the jet width, and extended to infinite 
wavelength. As the wavelength approached infinity the growth rate asymptoted to 
zero in proportion to the square of the wavenumber. 
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The instabilities take the form of normal modes that couple the free streamlines 
of the current and extract both kinetic and potential energy from the flow. In the 
long wavelength limit these become sinuous modes. 

Laboratory studies that GKS(1982) conducted demonstrated the unstable nature 
of a gravity current with two free streamlines. 

Here we extend the study conducted by GKS(1982) to a 2-layer system. It will 
be seen that the presence of the upper layer in combination with the slope serves to 
modify the shear instability in GKS(1982) and stabilises the flow to long wavelength 
perturbations. 

2    Basic State 

Our basic state consists of a 2-fronted gravity current on a slope of gradient a in a 
2-layer fluid with small density difference between the upper (pi) and the lower (p2) 
layers. To simplify the analysis, we choose layer 1 to be at rest in the unperturbed 
state, and for the current in layer 2 to possess a uniform zero potential vorticity 
(PV) distribution. The domain is divided into 4 regions as shown in fig(l) below. 
We use a shallow-water description of the dynamics. 

Flfrl        ßtelC   STATE 

.OÖ 
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2.1    Region 2 

For the unperturbed current we have 

TL2-U = —jdyh2 where  U = —— (1) 

U is the slope velocity associated with the geostrophic balance of the current against 
the slope, g' is the reduced gravity effect g' = ges^eL. The additional term involving 
dyh,2 represents the geostrophic velocity induced by the slope of the interface. 
To simplify the basic state we define layer 1 to be at rest and allow no cross-stream 

basic state velocity. 
Ui = Vi = V2 = 0 (2) 

In addition we choose a current with zero potential vorticity. This restriction implies 

that 
l2 = ^(i2-y2) (3) 

2.2 Regions 1 & 3 

We define 
Si = vi = 0 (4) 

hi = K - ay (5) 

K is the total depth of layers 1 & 2 at y = 0. 

2.3 Region 0 

tij = vi = 0 (6) 

h\ = K- ayw (7) 
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3     Perturbation Equations 

Using primes to denote perturbation quantities and 77' for the displacement of the 
free surface, the linearised momentum and continuity equations take the following 
Boussinesq form: 

3.1     Region 2, Layer 1 

dtu[ - fv[ = -gdxr)'          where TJ' = h[ + h2 (8) 
dtv[ + fu[ = -gdy7}' (9) 
dth[ + hxdxu[ + dyiv'M = 0 (10) 

3.2    Region 2, Layer 2 

dtu'2 + ü2dxu'2 + v'2dyü2 - fv'2 = -g'dxh'2 - gdxV' (11) 

dtv'2 + ü2dxv'2 + fu'2 = -g'dyh'2 - gdy-q' (12) 

dth'2 + ü2dxh'2 + h2dxu'2 + dy(h2v'2) = 0 (13) 

(14) 

3.3    Regions 0,1,3 

dtu[ - fv[ = -gdxrj' (15) 

dtv[ + fu[ = -gdvV' (16) 

dth[ + MX + h1dyv[ = 0 (17) 

4    Boundary Conditions 

The boundary conditions we use are simply v = 0 a.t y = — 00 and y = yw. 
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5     Non-dimensional Perturbation Equations 

Two dynamical length scales of interest will be used in the non-dimensionalisation. 
The first is an internal deformation radius based on the reduced gravity felt by the 
current and the height of the current at y = 0. It is defined 

id=VZ?      where      H = h2(0) (18) 

We also define a non-dimensional wavenumber e defined 

e = ^Ld (19) 

where A is the non-dimensional wavelength. 

For the most part following GKS(1982) we obtain the following non-dimensional 

variables: 

x = j— y = —-f— 

(u, U) = (u*, U*)y/^H v = v'eJtfH 

t = —r h = h*H 

r, = ri*-H       cc = a*^r        K = K*H 
9 H 

We apply a normal mode perturbation to the non-dimensional momentum equations 

of the following form (dropping *'s): 

(u',v',h',r,') = {u,-iv,h,-qy^-^ (20) 

The resulting equations become 

5.1    Region 2, Layer 1 

-CUi + V-i = -7] (21) 

—ce2ui + «i = — dyrj (22) 

hiU! - 9y(t;i/ii) - chx = 0 (23) 
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5.2    Region 2, Layer 2 

5.3    Regions 1,3 

u2(ü2 - c) = -(77 + h2) (24)                         ] 

e2v2(ü2 — c) + u = —dy(ri + h2) (25) 

h2u2 — dy(v2h2) + (u2 — c)h2 = 0 (26) 

-cu1 + Vl = -ri (27) 

-e2cv1 + u1 = -dyrj (28) 

hiii! - dyivih.!) - c—7] = 0 (29) 
9 

5.4    Region 0 

6    Non-dimensional Basic State 

The non-dimensional form of the basic state in Region 2 is 

u2 = U + y 

—CUi +Vi = —T] (30) 

—e2cui + tii = —dy-rj (31) 
  / 
hint - hidyVi — c—7j = 0 (32) 

9 

h2 = l- ^y2 (33) 

hx = K -h2-ay       where      K = 1 + li(0) 

We can see that since h2(0) = 1, that hi(0) is just the ratio of the layer depths 

at y = 0. The edges of the unperturbed jet lie at y = ±L = ±\/2. 
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7    Solutions Of The Equations 

We now make an approximation to simplify the equations, namely that hi = K ev- 
erywhere, except where it is differentiated in the continuity equations. This enables 
simple analytic solutions to be found in Regions 1 & 3. Where hx is differentiated 
with respect to y, it is taken to be -a or -(a + dyh2) as appropriate. By manipu- 
lating the non-dimensional perturbation equations we obtain single equations for 77' 

in Regions 0, 1 & 3: 

2J 
(34) 

7.1 Region 0 

dyi/17 - k? = 0       wliere       6 = (=- + e2 - ^-) 

The solution is simply 
77 = Aoe^ + Ate-** (35) 

The boundary condition at y = — 00 requires A\ = 0. 

7.2 Regions 1/3 

0^77 - ady-q - br\ = 0 where       ä = =-     and     b = (b + -) (36) 

The solution is 

v = A2e*v + A3e*v       where     P1>2 = £±3^±1* (37) 

7.3    Region 2 

In this 2-layer region the equations are more complicated due to coupling between 
the layers. We can obtain 

<u = -^ - *AP - *)+r<* - ^ -cV)        (38) 
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dy(h2dyU2) = -e2{-h2u2 + u2(ü2 - c)2 + rj(ü2 - c) (39) 

Because of the appearance of u2 in (38) and 77 in (39) the problem is 4th order. 

We note that it is homogeneous, with y-dependent coefficients. The solution was 

found numerically using standard Runge-Kutta methods and so the method will not 
be expounded upon in detail. 

8    Dynamical Modes 

It is both instructive and interesting to recognise the various wave modes present in 

this, and the GKS('82) study: 

Mode GKS('82)    Present Study 
Barotropic Topographic Waves (slow)    No 

Barotropic Poincare Waves (fast) 
Barotropic Kelvin Waves (fast) 

Baroclinic Internal Gravity Waves 
Baroclinic Kelvin Waves 
Shear waves 

We do not expect these fast modes to be dynamically important, since they will 

not be able to couple resonantly with the much slower current. 

8.1    Barotropic Topographic Mode 

The barotropic topographic mode is the most significant new addition to the problem 

in the 2-layer case, however this study did not explore a resonant-type coupling 

between the shear flow and the topographic mode: 

The phase speed of topographic waves is given by 
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No Yes* 
No Yes* 
Yes Yes 
Yes Yes 
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Le is the external Rossby radius of deformation, and k and I are wavenumbers in 

the x and y directions respectively. 
Taking the long wave limit corresponding to the fastest modes and therefore those 

which are most likely to couple, and neglecting the L~2 term which will be small, 

we obtain , 
c = 2L (41) 

KP K   J 

Scaling L ~ Ld ~ f ~ 7 and substituting, we obtain 

c ~ 
ccg'h2     vh2 (42) 

f K        K 

This is a factor ^ smaller than U (which is the average current velocity). In the 
present study we restricted our attention to currents that were unidirectional. More- 

over, the minimum velocities in the basic current were usually greater than -jf-, thus 

we do not expect to see resonant coupling. 

9    Shear Instability 

The shear instability which dominated the GKS(1982) study was caused by an inter- 

action between disturbances to the two free streamlines at the edges of the current. 
This produced modes which grew exponentially, by releasing kinetic and potential 

energy from the basic state. In the k = 0 limit corresponding to perturbations 

of infinite downstream length scale, the imaginary part of the phase speed of the 

eigenmode asymptoted to zero and the structure of the mode became a sinuous 

meandering disturbance. 

The shear instability only occurs at wavelengths with large enough cross-stream 

length scale to cause an interaction across the current. We can scale the cross-stream 

wavenumber / = k/e, and thus waves with a larger downstream wavenumber have 

larger I, ie smaller cross-stream wavelength, and are stable to this mode of instability. 

The mechanism for the instability will become apparent in the next section. 

The shear instability found by GKS('82) was found to be present in this study as 

expected, and fig(3) shows the r\ eigenfunction structure for one of the shear modes, 

corresponding to a non-dimensional wavelength of 21 La, and hi = 10. The figure 

shows large displacements in rj (the free surface displacement) at the edges of the 
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current associated with the instability. 

Fig(4) shows the displacement in the cross-stream direction of the free stream- 

lines associated with the instability. We can see that there is a small phase shift 

between the disturbance on the two fronts. This is a necessary characteristic of 

barotropic (shear) instability as we will see shortly. 

9.1     Changing Slope And Upper Layer Depth 

The band of unstable shear waves was tracked through wavenumber space for vary- 

ing slope and depth, hi. 

Fig(5) shows a plot of growth rate (ecjm) vs wavenumber for varying slopes in 

the case where hi = 10. We can see that as the slope increases the band of unstable 

waves narrows and moves to longer wavelengths, and the maximum growth rate 

decreases. It is evident that at some slope slightly greater than .033, the flow is 

stabilised to long waves. 

Fig(6) shows a similar plot for Kx = 20. We see that now a steeper slope is nec- 

essary to stabilise the flow, and the band of instability for a given slope has shifted 

to longer wavelengths. 

Fig(7) displays the Hi = 40 case. Now even a slope of .05 is not enough to 

stabilise the flow and the band of unstable waves is still quite wide. The instability 

extends further towards k = 0, in particular, for steeper slopes where we see that 

waves for k = 0.08, corresponding to A = 75£j are unstable. 
Note that for values of slope greater than .008 in the hi = 10 case, .016 in the 

hi = 20 case, and .024 in the hi = 40 case, the hx= K approximation is no longer 

satisfied at yw. We do not expect this to introduce a significant qualitative change 

to the results discussed. 
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9.2    Mechanism Of Shear Instability 

We have seen that smaller upper layer depths and steeper slopes are more stable to 
long wavelength perturbations. In the next section we will see why, but let us first 
consider the mechanism for the instability itself: 

WO   PHAS6 SHIFT 

0 

PHASe   SHIFT 

The +'s and —'s in the above diagram denote relative vorticity anomalies asso- 
ciated with the displacement of the current by the normal mode perturbations. The 
ambient fluid surrounding the current (our layer 1 fluid) has zero basic state relative 
vorticity as there is no flow. Since the current has —ve relative vorticity associated 
with its linear shear (to obtain zero potential vorticity), then perturbations of the 
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current to regions where there was previously no relative vorticity generate —ve rel- 

ative vorticity anomalies. Similarily, areas to where the ambient fluid has moved to 

replace space left by the perturbed current have +ve relative vorticity anomalies. 

The subscripts on the vorticity anomalies correlate with arrows on the meander 

in the topmost streamline pictured in both cases. These arrows represent the vectors 

of velocity induction by the surrounding vorticity anomalies on the point from which 

the arrows emanate. 

In the first case, where there is no phase shift in the disturbance to the two 

sides of the current, we see that the resultant of the vorticity induction vectors is 

purely a downstream propagation of the disturbance at that point. This situation 

corresponds to the GKS(1982) A; = 0 limit. 

In the second case, where there is a phase shift in the disturbance, the magnitude 

and direction of the contributions from the vorticity anomalies is changed. We can 

see that there is now a cross-stream component to the resultant of the vorticity 

induction vectors, due to vorticity anomaly (3), and also from the resultant of (4) and 

(5). The sense of this component is such as to make the meander grow, producing 

instability. We note that if the phase shift were reversed then the meander would 

decay. 

Note: This mechanism is analagous to the two-dimensional instability of a shear 

layer. It does not directly require the presence of topography. The topography 
induces an average along-slope velocity which simply contributes to the along-slope 

propagation of the unstable wave. The topographic slope has been marked on the 

diagram to assist in the explanation of the stabilisation of the current. 

9.3    Stabilisation Of Shear Instability 

When the upper layer has a finite depth, the role of topography is enhanced. Relative 

vorticity generation in the upper layer by vortex stretching and compression due to 

the perturbed current serves to modify the instability described. 

Consider vorticity anomaly (3) in Fig(2). Upper layer fluid that moves upslope 

(to replace the space left by the perturbed current), will acquire -ve relative vorticity 

from a vortex compression effect as it ascends the slope. This counteracts the +ve 

vortex anomaly associated with the absence of the current and thus decreases the 
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cross-stream component of the vorticity induction vector due to (3), helping to 
stabilise the current. 

At points (1) & (2), there is an enhancement of the positive vorticity anomaly 

by a downslope vortex stretching effect, however this only serves to enhance the 

downstream propagation of the disturbance to the free streamline. 

The relative vorticity generation in the upper layer is enhanced if the upper layer 

is thinner (since the volume of fluid is decreased) and/or the slope is steeper, and 

thus for some slope and upper layer depth we would expect that it might inhibit the 

instability. At some point (taking into account the cross-stream component due to 

(4) & (5)), there will be no cross-stream component to the resultant of the vorticity 

induction vectors at our point of consideration in Fig(2). For a steeper slope and/or 
thinner upper layer depth, the resultant of the vorticity induction vectors would be 

such as to provide a restoring effect to any perturbations. 

In GKS(1982), where the upper layer is effectively infinitely deep, there can be 

no counteracting upper layer relative vorticity generation and thus no stabilising 
effect on the current. 

Interestingly, this mechanism is not the whole story. Fig(8) shows the plot of 

growth rate (ecim) vs wavenumber for a = 0 (the case of no slope), when hx = 10. 
For a = 0 we know that the stabilising mechanism discussed above cannot operate, 

and in the absence of any other effects would expect the longwave instability to 

extend to k = 0. The above discussion omits the stretching and compression of 
upper layer fluid columns associated with the movement of the interface separating 

the two layers. We beleive that this gives rise to an additional stabilizing mechanism. 

10     Second Instability 

Another type of instability was found at higher wavenumbers and Fig(9) shows a 

plot of growth rate vs wavenumber for this band, where a = .05, and hi = 20. The 

instability was not found to be present for lower slopes or larger upper layer depths. 

In fact the instability was enhanced for smaller upper layer depths, although it is 

correct to say that the h = K approximation is greatly violated for such a large 
slope when the upper layer depth is small. 

304 



Rfr   % W.-20 

(p-u) eveu IIIMOJE) 

305 



R6- <{ 

(p-u) ejBy MIMOJO 

306 



Fig(lO) shows a plot of 77 for the unstable mode k = 2.96 which corresponds to 

a wavelength of approximately ZL^. 

Fig(ll) shows the free streamline perturbations, which exhibit both a meandering 

and varicose, nature. 

Further work needs to be conducted to determine the nature of the instability 

via energetics, to determine the energy conversion terms. The instability could be 
baroclinic, in which case we would expect to see cross-stream heat fluxes associated 

with potential energy release from the basic state. If the instability were barotropic, 

we would expect to observe kinetic energy release form the basic state, though of 

course it could be a mixed mode. 

11     Conclusions 

(1) Two-layer effects exert a stabilising influence on the flow for long wavelengths. 

The band of unstable waves decreases in width and the growth rate decreases in 

magnitude with increasing slope and decreasing h\. 
The stabilising mechanism proposed depends on the relative vorticity generation by 

vortex stretching and compression in the upper layer due to cross-stream perturba- 

tions of the current. This vorticity can cancel vorticity anomalies due to the moving 

current (which has —ve relative vorticity); anomalies which would otherwise serve 

to destabilise the flow. 

(2) Further work needs to be conducted to determine the nature of the second 

instability, and it is not possible at the present time to make comment. 
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The Takens-Bogdanov bifurcation in an extended system 

JV. J. Balmforth and K. A. Julien 

In thermohaline convection the onset of instability can be either through an over- 
stable oscillation (a Hopf bifurcation), or via a steady mode of overturning (typically a 
subcritical pitchfork bifurcation when overstable oscillations exist). Which of these path- 
ways is actually taken is dependent upon the particular fluid system under consideration. 
Here we will be concerned with the situation in which the two possible bifurcations occur 
simultaneously. This "degenerate" situation is often referred to as the Takens-Bogdanov 

bifurcation. 
The unfolding of the Takens-Bogdanov bifurcation for thermohaline convection was 

previously carried out by Knobloch and Proctor (1981), and Coullet and Spiegel (1983). 
They concentrated on two-dimensional fluid systems bounded above and below by rigid, 
stress-free plates, at fixed temperature and salinity and which were assumed strictly peri- 
odic in the horizontal. Here we take their analysis further by considering a fluid with the 
same vertical boundary conditions, but which is extensive in the horizontal. Rather than 
deriving an amplitude equation of the form of an ordinary differential equation, this leads 
us to find a partial differential system governing the development of the instability. An 
alternative approach to this problem was taken by Bretherton (1981), who used a Galerkin 
truncation to find amplitude equations. 

Formulation 
The equations governing a Boussinesq, two-dimensional fluid can be cast in the form, 

VV + RT&X - RsX* = -dtV
2i> + J(^, VV), (!) 

a 

v2Q + i>x = dte + j(<i>,e) (2) 

and 
rV2E + V* = dt£ + J(^,S), (3) 

for the fluctuating parts of the streamfunction, ip(x,z,t), temperature, Q(x,z,t), and 
salinity, S(x, z,t). These equation are free of dimensions, which has lead to the inclusion 
of the thermal and saline Rayleigh numbers, RT and Rs, the Prandtl number, cr, and the 
inverse of the Lewis number, r. The symbol J(X, Y) represents the usual Jacobian. 

Equations (1) - (3) are to be solved subject to the boundary conditions, 

rP = ^zz = 0 = £ = 0 (4) 

on the plates, which we locate at z = 0 and TC.  Note that the system (l)-(4) possesses 
0(2)-symmetry with translation, x -» x + d, and reflection, x -> —x, invariance. 
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Linear theory 
On neglecting the nonlinear terms in (l)-(3), introducing the dependences, exp(ikx + 

Xt) s'mz (so we consider only the gravest mode in the vertical), and solving for the eigen- 
value, A, we arrive at the cubic dispersion relation, 

A3+p2(l+<7+r)A2+p4 (a + T + <TT) 
ak2(R Rs 

Rs)   A+o-r  p6 - k2 I RT - — 1    =0 

(5) 
(c/. Veronis, 1965), where p2 = 1 + k2. 

When the final term on the left-hand side of (5) vanishes, the system is marginally 
unstable to a direct instability. That is, for 

Rs , p6 
■psteady         ~    , 
KT -~+k* (6) 

For RT greater than this critical value, the mode with wavenumber k is unstable. If A = iu, 
with oj real, then 

ak2 

(a + T + <TT) -(RT - Rs) , ,2 _ _4 U   = p 

CFT 

p2(l + a + r) [ P 

p° 

k2[RT 
Rs 

(7) 

(8) 

and the system undergoes a Hopf bifurcation. By combining (7) and (8) we arrive at 
another critical condition,= Rrj?p\ However, we will be dealing with the Takens-Bogdanov 
point for which the two bifurcation occur simultaneously. This occurs when the frequency 
of the Hopf mode vanishes which reveals both (6) and the relation, 

P 
RT = Rs -\—r^-(c + r + <TT). (9) 

The curves of marginal stability and the loci of the Takens-Bogdanov points for <r = 7 and 
r = 0.9 are shown in figure 1. The important features of this figure that the curves of 
marginal oscillatory instability are bounded by the locus of the Takens-Bogdanov points 
and disappear at the minimum of this locus where two Takens-Bogdanov points collide. 

It is clear from (6) and (9) that the Takens-Bogdanov point is the co-dimension two 
bifurcation located on tuning the two parameters, RT and Rs- These parameters are then 
defined as functions of the remaining parameters, o and r, and the wavenumber, k. The 
wavenumber appears in these formulae through the quantity, p6/k2 = (1 4- k2)z/k2. This 
quantity has its minimum at the value, k = kc = l/\/2. Hence, if RT and Rs take the 
values given by (6) and (9) with k = kc, then the state is marginally stable with respect 
to this critical wavenumber, and all other wavenumbers are stable. The critical values 
satisfying (6) and (9) with k = kc we denote by 

R T = R — 
pe  (<T + T) 

P<7(1-T)' 
Rs 

P6T2((7+1) 

k2   (T(1-T)  ' 
(10) 
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Our goal is to now perturb the system around this special point, and derive a weakly 
nonlinear amplitude equation. The important point is that for RT > R and Rs > S, there 
are bands of unstable modes. These bands may be associated with either direct instabilities 
or overstability, or mixtures of the two (see figure 2). As RT -> R and Rs -» S, these 
bands shrink to a point around the marginal value, k = kc (see figure 1). In other words, 
the parameter values RT = R, Rs = S and k = kc reflect a state in which not only 
do we have a Takens-Bogdanov bifurcation, but it is at marginal stability. Furthermore, 
this state actually corresponds to the collision and disappearance of two Takens-Bogdanov 
points approaching from different wavenumbers. Thus, in the perturbation expansion, we 
tune both RT and Rs and introduce a long length scale X = (k - kc)'1 to unfold this 

doubly degenerate bifurcation. 

Asymptotic expansion 
We now pose the asymptotic expansions, 

^ = c^i + c2^ +-, 6 = e0i + e202 + -        and        S = e£i + e2E2 + ...,     (11) 

rescale time by T = et, and introduce the multiple length scales, x and X = ex. As part 
of the unfolding of the Takens-Bogdanov degeneracy, we further pose 

RT = R + erx + e2r2        and        Rs = S + e$i + e2$2. (12) 

To leading order, the equations (l)-(3) become, 

vVi* + ÄGixx - srslxx = o, (13) 

V201+Vix = O (14) 

and 
rV2S! + Vi* = 0. (15) 

By virtue of our choices, RT = R and Rs = S, these equations have a unique solution, 

= [A(X,T)eik°x + c.c.]smz [  2/3   ). (16) 
Si I \2/3r/ 

At next order, we have the system, 

VV2 + -R02* - SX2x = -£-rl>iT ~ RQix + SX1X + tyix* ~ ri0i* + siSix,      (17) 

V202 + fax = ©IT + ö I A\2 Sin2z ~ 2QiXr ~ i>XX (18) 
O 

and . 

rV2E2 + fox = SIT + ir\A\2 sin22r " 2rSixx - fax- (19) 
OT 

313 



The solution for (fax, ©25^2) can be divided into two pieces (a further, homogeneous 
solution can be ignored). The first is the harmonic of the original mode: 

0(2) I = -i|A|2sin2z f     1     ) • (20) '2 
,(2) 
J2 

whereas the second has dependence elkcX sinz. This second piece requires some considera- 
tion since we need to avoid it being unbounded. The equation for second component can 
be written in the form, (^^ > ©2   ■> ^2   )TelkcX sin z, where 

M I 0<*> \= AT f 2/3   ] +ikcAx I 2/3 ) + A \ 0 j ,       (21) 
S(DJ \2/3rJ \2/3j J2 

and 
/-3ff/2 «7Ä/3 -<rS/3\ 

M =          1 -3/2 0          .                                         (22) 
\     1 0 ST/2/ 

The matrix, M, has both a null vector, ei, and a generahzed eigenvector, e2, defined by 

/   °   \ and        e2 =       -4/9       ; (23) 

that is, Me\ = 0 and Me2 = ei. Moreover, there is an adjoint vector to ei, 

ej = (1,2<7Ä/9, -2<rS/9r), (24) 

with property, e[M = 0. Provided the vector on the right-hand side of (21) is therefore 
orthogonal to e{, we find a bounded solution. In fact, on taking the product of e{ with 
(21), we discover that we must insist that ri = S\/T. Then the solution can be written in 
the form, 

>2*\ /     0     \ 1 /   0 
02      = ATetkcX sinz e2 + ikcAxetkcXsinz I   -4/9      + c.c. - -\A\2 sin2z        1 
S2/ V-4/9ry 3 \l/r2 

(25) 
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We now proceed to order e3. The system that needs to be solved is 

VVs + RQzx - SZ3x = 

3^ixx - ÄÖ2X + SZ2x - ri02l + siE2* - r2Qix + s2^ix + O.T., (26) 

V203 + fax = 02T + \\A\2Aeik°x sinz - 202X* - &ixx + O.T. (27) 

and 
rV2E3 + fax = S2T + ^|A|2Aeifc«* sinz - 2r£2Xx - rElXX + O.T., (28) 

3rJ 

where O.T. indicates other, non-resonant terms. We can solve (26)-(28) provided we take 

the Fredholm Alternative, 

ATT + HAT + lA- SAXX - 2\A\2A = 0, (29) 

where 

7 = ■ 

and 

2cr(l - r)ri 

~9(1 + <T + T)' 

crr(r2 - S2/T) 

' 3(1 + <r + r) 

(30) 

(31) 

S = 52Z . (32) 
(1 + a + r)- ^    J 

Equation (29) is the amplitude equation governing the instability. 

Regularization 
Although the asymptotic calculation outlined above leads to what at first sight ap- 

pears to be a perfectly sensible amplitude equation, it is degenerate and the formulation 
is fundamentally flawed. This can be seen immediately on looking for travelling wave so- 
lutions to (29); if one introduces the travelling wave solution, A(£) = A(X - cT), then 
separates real and imaginary parts, the only solution is for c = 0. In other words, the 
travelling wave solutions that emerge at the Hopf bifurcations which unfold from the de- 
generate Takens-Bogdanov point are not captured by the asymptotic amplitude equation 
(29). The equation does however capture the steady, overturning solutions, but it remains 
an incomplete description. 

This problem is deep-rooted in the asymptotic unfolding of the Takens-Bogdanov 
bifurcation. For periodic boxes, there is a similar problem in the ordinary amplitude 
equation (Spiegel, 1981). In fact, (29) reduces to the form of that equation if one simply 
omits the X—derivatives. 

To recover the missing pieces in the unfolding, one must resort to the more sophisti- 
cated techniques of normal-form theory in the context of periodic systems. Such a theory 
does not yet exist for extended systems. Instead we need to follow the somewhat inele- 
gant, alternative route of reconstitution (Spiegel, 1981). In the purely periodic case, this 
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amounts to proceeding to next order, then adding certain of the new terms back into the 
original equation for the amplitude, a(t). This leads one to add a term of the form, a2a, 
into the amplitude equation. This term models a nonlinear dissipation and also emerges 
from the normal-form analysis (Coullet and Spiegel, 1983). 

If we follow a similar procedure here to obtain the corresponding term, we arrive at 
the regularized amplitude equation, 

ATT + nAT + ikuAxT + 7A - SAxx - 2\A\2A + ml \A\2AT + —A\A\% ) = 0,     (33) 

where 

In principle, one should also reconstitute terms of higher order in the spatial derivatives, 
and higher-order nonlinear terms. However, for now, we omit these. Equation (33) is 
the regularized amplitude equation, some of whose solutions we will describe next. Note 
that, on omitting the spatial derivatives, (33) reduces to the normal form presented by 
Dangelmayr and Knobloch (1984) with the exception of a term |Ar|2A which formally 
occurs at higher order. 

Linear theory again 
If we now retain only the linear terms of (33), we can again consider the stability of 

the hydrostatic background. If we set A = exp AT + iKX, then the eigenvalue satisfies 

\ = -±l*±J±f-T-6K*. (35) 

At K = 0, this is just 

Ao = ~/i±y^-7. (36) 

For fj, > 0, there is therefore a real eigenvalue (namely that with the + sign) that passes 
through zero as 7 decreases through zero. That is, the bifurcation of direct modes occurs 
for K = 0 at 7 = 0. In addition, for 7 < 0, there is a Hopf bifurcation at // = K = 0, and 
for ß < 0 there is overstability. 
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Finite amplitude solutions 
Equation (33) admits a class of steady solutions, A = RelK(x~cT\ with 

(S - c2)K2 - icfxK + 7 = (2 + icwK)R2. (37) 

The real parts of (37) imply 

J? = I[7 + (6 - c2)K\ (38) 

whereas the imaginary terms give 

c(wR2 +n) = 0. (39) 

We may solve these two equations for either stationary solutions, or for travelling waves 
of finite amplitude. For the former, c = 0 and so 

R2 = i(7 + 8K% (40) 

Since 7 < 0 indicates the degree of direct instability, equation (40) evidently corresponds 
to a steady branch of subcritical solutions. These solutions are therefore unstable. 

The travelling waves have c ^ 0, and rearrangement of (38) and (39) gives 

R2 = -V/ZJ (41) 

and „ 

c2={+(lZ_p!>^+^. (42) 

From linear theory we know that overstability sets in when K = 0 and [x < 0. Thus the 
travelling wave solutions emerge supercritically. Note that the amplitude and wavespeed 
of these solutions diverge as cu —> 0. 

Discussion 
This note has described the derivation of an amplitude equation at the marginally 

stable, Takens-Bogdanov point. For thermohaline convection with boundaries that are 
stress-free, and of fixed temperature and salinity, the asymptotic theory does not uncover 
a complete description of the dynamics. Rather, additional nonlinear dissipative terms 
need to be recovered from higher order as in the standard Takens-Bogdanov problem. 

One method around the difficulty with the amplitude equation would be to try dif- 
ferent physical systems for which the coefficient of the cubic term could also be made to 
vanish at, for example, some values of a and r. The analysis could then be taken to higher 
order with a different scaling for the time derivative (in fact, one like the Malkus-Veronis 
scaling, T = e2t). However, that is not possible for the current system since the relevant 
coefficient in (29) is negative definite and independent of the parameters. Such problems 
highlight the need for a normal-form theory for extended systems. 
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For the thermohaline system considered here, the points in parameter space for which 
the cubic coefficient vanishes are also co-dimension two bifurcations. This point is actually- 
given by RT = RSTeady and Rs = Rfhicp&rz/k2{\ - r2). Thus as for Taken-Bogdanov, 
such points also he on parabolic loci on the k — RT plane. Moreover, when k = kc, the 
cubic coefficient vanishes at the point of marginality. Furthermore, since i2|u6tc < 5, the 
steady bifurcation must always be subcritical in the neighbourhood of the Taken-Bogdanov 
points. At Rc^htc, an asymptotic reduction results in an amplitude equation of the form, 

AT + -yA - Axx + S\A\2A - \A\4A = 0. (43) 

A combination of this equation and (33) is what one would derive if one could force 
the Takens-Boganov bifurcation to occur simultaneously with the vanishing of the cubic 
coefficient. Presumably, that amalgamation would contain a wealth of dynamics. 

For the regularized system (33), we have provided some steady and travelling solutions. 
Of these, the steady rolls are subcritical and therefore unstable. The travelling solutions 
are supercritical, but they may be unstable to secondary instabilities of the Eckhaus variety 
(see Fauve, 1991). This must be uncovered by looking at the linear stability of the finite- 
amplitude solutions, which leads into a version of phase dynamics for the thermohaline 
system. As pointed out by Bretherton (1981), the system may also lead to solitary wave 
solutions in the limit that (34) approaches a Klein-Gordon equation. In that circumstance, 
soliton perturbation theory can be used to elucidate the solitary wave dynamics. Such 
directions are worthy of future work. 
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Figure 1: Curves of marginal stability 

0.5 1 1.5 2 
Horizontal wavenumber, k 

Figure 1: Curves of marginal stability for a = 7 and r = 0.1. The solid curves (marked 
S) show the onset of steady convection, and the dashed curves (marked H) indicate the 
onset of overstability, for Rs = S + 10j with j = 0, 1, 2 and 3. The dotted curve shows 
the locus of Takens-Bogdanov points (marked TB). 

Figure 2: Growth rates 
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Figure 2: Growth rates against k for RT = 90 and Rs = 65, 70 and 75. For Rs = 65 
and 70, there is a band of direct instability. When Rs = 75, the system possesses a band 

of overst abilities. 
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Double-Diffusive Intrusions Across the Arctic Ocean 

E. C. Carmack 
Institute of Ocean Sciences (IOS), Sidney, B.C., V8L 4B2, CANADA 

Abstract 

Ddata obtained during the Canada/U.S. 1994 Arctic Ocean Section shows that a major 
warming and ventilation of the mid-depth layers of the Arctic Ocean (200-1000 m) occured 
due to influx of anomalously warm waters from the Atlantic.  This transition from one 
stationary thermohaline structure to another appears to have begun in the early 1990s; now, 
anomalously warm waters are found in the Nansen, Amundsen, and Makarov basins, with the 
largest temperature difference, as much as 1 °C, in the core of the Atlantic layer.  The 
transition is occuring  via multiple intrusions, 40-60 m thick, extending laterally through the 
Atlantic and upper deep waters; these features appear to be laterally coherent across the 
Arctic Ocean (> 2000 km) and to persist over time-scales of several years.  Once formed, the 
layers can support both diffusive and salt finger convection.  Potential temperature (0) versus 
salinity (S) correlation curves for each successive diffusive and salt finger regime are 
parallel, with higher values of the stability frequencey (N) in the diffusive regime than in the 
salt finger regime.  However, the process of thermohaline transition via self-organized and 
self-propelled layers has not been simulated, parameterized, or accounted for in GCMs. 

Introduction 

Thermohaline transitions are changes, either temporal or spatial, from one stationary 
thermohaline structure to another.  The phenomenology generally involves one water mass 
either displacing or lying in juxaposition to another, slightly different, water mass, with lateral 
exchanges occuring via the formation of intrusions along near-isopycnal surfaces.  Such 
intrusions give rise to alternating layers of diffusive and salt finger convection (Ruddick, 
1992).  Spatial transitions are well known to exist in ocean settings such as frontal regimes or 
across mesoscale features (cf. Federov, 1970).  Similar intrusions can also occur in the deep 
waters of lakes; for example, where distinct water masses occur in basins separated by sills 
(cf. Wuest et al., 1988). 

Observations of recent changes in the thermohaline structure of the Arctic Ocean obtained 
aboard the CCGS Louis S. St-Laurent during the Canada/U.S 1994 Arctic Ocean Section 
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(Arctic-94; Figure 1) are presented. Data were collected using a Neil Brown conductivity- 
temperature-depth (CTD) system (with accuracies estimated at T = + 0.001 °C; S = + 0.002; 
and D = + 2m). Potential temperature (6) and density (a) were calculated from algorithms in 
Unesco (1983). 

Thermohaline Changes in the Arctic Ocean 

Warm, relatively salty water of Atlantic origin enters the Arctic Ocean through Fram Strait 
and the Barents Sea, subducts beneath the cold and relatively fresh surface water, and flows 
counterclockwise along the continental slope and submarine ridges (Figure 1; Carmack et al., 
1990). Fresher and less dense water of Pacific origin enters through Bering Strait and 
likewise flows in a counterclockwise direction (Aagaard, 1989).  Both waters exit the Arctic 
into the North Atlantic via Fram Strait and the complex Canadian Archipelago.  Earlier views 
held that this flow maintains quasi-stationary water properties in the interior Arctic Ocean, 
and that significant variability occured only on the adjacent marginal seas and shelves; for 
example, data obtained in the Canada and Makarov basins prior to the 1990's show the 
Atlantic layer temperature maximum (0^) between 0.4 to 0.6 °C (cf. Carmack et al., 1995). 
Above this layer cold, nutrient-rich Pacific water was believed to form a stationary structure 
which extended across the Canada and Makarov basins to the Lomonosov Ridge  (Kinney, et 
al., 1970; Pounder, 1985).  During the past five years, however, evidence has appeared of a 
major thermohaline transition event within the core of the Atlantic layer, first in 1990 in the 
Nansen Basin north of Svalbard (Quadfasel et al., 1991) and then in 1993 in the Makarov 
Basin north of the East Siberian Sea (Carmack et al., 1995; McLaughlin et al., 1996).  Data 
from Arctic-94 show that this trend now extends across the Nansen, Amundsen, and Makarov 
basins (Carmack et al., 1996).  For example, the vertical section of 0 from the Chukchi Sea 
to the North Pole (Figure 2) shows the three main thermal layers of the Arctic Ocean: cold 
(0<O °C) surface water in the upper 150-200 m, warm Atlantic water (0>O °C) at mid-depths, 
and cooler deep water (0<O °C) below about 800 m.  The multiple cores of water warmer 
than 0.8 °C between 200-350 m are associated with topographically-steered currents following 
the continental slope and submarine ridges crossed by the ship.  Comparison with earlier data 
North American ice camps prior to the 1990s shows that the largest temperature change, over 
2 °C, occurs near 200 m since the Atlantic core is now both warmer and shallower. 
However, near-surface water (50-100 m) is now actually colder due to the replacement of 
waters of Pacific origin by surface waters from the Eurasian Basin.  The missing Pacific 
water likely exited into the North Atlantic or the Labrador Sea via Fram Strait or the 
Canadian Archipelago. 

Thermohaline Structure 

Selected profiles of 0 and S versus depth (Figure 3) show the basic thermohaline structure of 
the Arctic Ocean. In the Atlantic layer above 0m„ both temperature and salinity increase 
with depth (cf. Padman and Dillon, 1987), while below ©„^ the water column is stabilized by 
both 0 and S gradients.  Superimposed on the large scale distributions are multiple, finescale 
horizontal intrusions in which 0 inversions are stabilized by a density compensating salinity 
profile. The upper portion of each finescale intrusion may support the diffusive instability, 
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while the lower portion may support the salt finger instability (cf. Schmitt (1994).  Profiles of 
the density ratio, RP, show relative constant values within each regime for each successive 
layer; e.g. about 0.2 to 0.4 for the diffusive regimes and 1.5 to 1.8 for the salt finger regimes. 

Expanded scale correlation 0/S diagrams from all Arctic-94 stations (Figure 4) show that the 
intrusion of new water occurs in coherent, well-defined layers.  Further, the intrusions are 
aligned in 0/S space, and appear immune to mixing and disruption by shear flow and internal 
waves.  Surprisingly, the intrusions occur in exactly the same place on 0/S space as observed 
in other parts of the Arctic in 1991 (Rudels et al., 1994) and 1993 (Carmack et al., 1995a). 
Hence, the layers are both laterally coherent across the entire Arctic Basin and quasi- 
stationary in time. The aspect ratio (length/height) is near 2 x 10"6, much smaller than scales 
typically reported for ocean finestructure (cf. Federov, 1979). 

Figure 4 also shows that the slopes of 0/S for each successive layer in the vertical form a set 
of near-parallel lines for both the diffusive and salt finger regimes.  The salt finger regimes 
cross isopycnals at a small angle (RP about 1.2) suggesting that the transformation of layers 
as they spread laterally is not a purely isopycnal mixing process, but rather is such as to 
increase the salinity (and density) more rapidly that than can be compensated for by the heat 
flux.  The 0/S slopes associated with the diffusive regimes (about 4) are close to those giving 
maximum contraction on mixing, while the 0/S slopes associated with the salt finger regimes 
(about 20) are close that those yielding maximum stability to mixing (minimum potential 
energy) when the effects of contraction on mixing and differential compressibility are 
considered (cf. Bennett, 1996). 

Because the salt finger regimes of each intrusion have constant 0/S slopes, it is useful to 
"rotate" the salinity axis by defining S^ = S - (AS/A0)0, where AS/A0 = -0.056, so as to 
vertically align the salt finger regimes, as is done in the 0/S^ scatter diagram shown in 
Figure 5.  Here, each 0/S^ data point represents a layer of water 4 m thick, so that the 
density of points represents the volumetric distribution of water properties.  Also shown in 
Figure 5 is the distribution of stability frequency, N = ((g/p)(öp/öz))1/2.  Here, several 
features are evident.  First, the water is volumetrically "banded" or quantum-like in 0/Smix 

space; that is, there is a greater volume of water occurring along narrow S,,^ lines aligned 
with the salt finger regime than elsewhere.  Second, while N shows a general decrease with 
depth from values of about 4 hr"1 in the thermocline region to about 0.5 hr1 in the deep water, 
the pattern is dominated by a series of alternating values associated with each intrusion: 
within each diffusive regime N is maximum; within each salt finger regime N is near-zero. 
Within each individual intrusion N (and potential vorticity) is constant across the full width 
of the Arctic Ocean. 

The thermohaline transitions span not only the Atlantic layer, but in places extend well into 
the deep water.  For example, Figure 6 is a 0/S^ plot expanded in scale to show detail in the 
deep water.  Here, layer structure is clearly evident to depths exceeding about 2000 m, the 
approximate sill depth of the Lomonosov Ridge which separates waters of the Makarov Basin 
from the Atlantic.  Inspection of individual station data suggest that the intrusions emulate 
from new water entering the Makarov Basin along the flank of the Alpha-Mendeleyev Ridge. 
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Conclusions 

Data from the first oceanographic crossing of the Arctic Ocean document what appears to be 
a recent influx of anomalously warm water from the Atlantic into the Arctic Ocean at mid- 
depth. These data to signal a major change in the thermohaline structure of the Arctic Ocean 
driven by changes in the transport of Atlantic waters through Fram Strait and the Barents Sea, 
and an internal re-arrangement of water mass boundaries.  However, the process of 
theromhaline transition via self-organized and self-propelled double-diffusive intrusions 
has not been simulated, parameterized, or accounted for in GCMs. 
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Figure Captions 

Figure 1. Map showing the Arctic Ocean and Arctic-94 station locations. 
Figure 2. Sections across the Canadian Basin of (a) 0 and (b) 0 anomaly. 
Figure 3.        Vertical profiles of 0, S, and density ratio (RP) at station 17 from 

Arctic-94. 
Figure 4.        Correlation 0/S plots for Arctic-94 stations; also shown are lines of 

constant  o05. 
Figure 5 Correlation plots for Arctic-94 stations showing  0/S^ and N/S,,^, 

where S^ is a parameter obtained by rotating the salinity axis to be 
parallel with the mixing bands, and N is the stability frequency. 

Figure 6. Plots from Station 23 showing (a) vertical profile s(100 to 500 m) of 0, 
S, and RP, and (b) correlations of 0/S and 0/N  in the range 0 = 0.6 to 
-0.8 °C and SmiT = 34.8 to 35.0. 
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Thermohaline staircases have been observed in large parts of the central Western 
Mediterranean Sea, the Algero-Provencal-Basin, during two hydrographic surveys in 
January and October 1994. The cruises were carried out in the framework of the 
THETIS-2 project [18]. 

The general circulation of the Mediterranean is dominated by the concentrating 
character of this basin: the integrated evaporation is larger than the input by pre- 
cipitation and by river run-offs. This causes an inflow-outflow regime in the strait 
of Gibraltar with a low-salinity water mass flowing into the Mediterranean above an 
outward flowing high-salinity water mass. The temperature difference between the in- 
and outflow (the inflow is warmer than the outflow) shows that the net surface heat 
fluxes in the Mediterranean must be directed from the sea to the atmosphere. Both 
net fluxes (of freshwater and of heat) cause the outflowing water mass to be denser 
than the inflowing and thus to be located below the inflow. A similar picture can be 
drawn for the eastern Mediterranean and the strait of Sicily. 

In the western Mediterranean three major water masses (see fig. 1) can be found 
at different depth intervals (e.g. Millot [12]): Modified Atlantic Water (MAW) in 
the uppermost level (0-150 m), Levantine Intermediate Water (LIW) in the middle 
(250-500 m) and Western Mediterranean Deep Water (WMDW) in the deepest level 
(1400 m to the bottom). The depths between these levels are filled with mixed types 
of the three water masses. 

The observed staircases occur in the depth range from 500 to 1300 m, right be- 
low the temperature and salinity maximum of the Levantine Intermediate Water. The 
vertical density ratio Rp ranges from 1.05 to 1.3 with a mean of 1.15 and decreasing 
values with depth. The vertical extension of the well-mixed layers and the size of 
the temperature and salinity steps is variable. However, the 0-S diagram (potential 
temperature-salinity diagram) reveals that the well-mixed layers in different profiles 
are not independent from each other. The 0-S values form characteristic bands which 
suggest that the layers are strongly connected with each other but that divergences 
or convergences of the thermohaline fluxes lead to horizontal variations of the charac- 
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Figure 1: Water masses of the Mediterranean Sea. 

teristics. Since the temperature and salinity characteristics remain the same between 
the two cruises, a quasistationary equilibrium must exist between the along-layer and 
across-step thermohaline fluxes. 

The step structures show a high variability in their pattern: some have inverted 
layers, a sign of active horizontal exchanges; others show very regular layers; and some 
with only weafc-gradient interfaces between well-mixed layers of decreased thickness. 
This variability is used to distinguish regions with active layer-forming, with fully 
developed step structures, with reduced layering and without steps. 

1    Watermasses and Circulation in the Western Mediter- 
ranean 

Atlantic water enters the basin through the Strait of Gibraltar, is modified by mixing 
and thermohaline fluxes, and feeds the Algerian Current which follows the Algerian 
coast eastward. Part of it passes the Straits of Sardinia and Sicily (see fig. 2 for 
straits and basins) and takes part in the circulation in the Eastern Mediterranean, 
whereas other parts follow the coastlines of Sardinia and Corsica and Italy northward 
and merge together in the Northern Current (e.g. Sammari et al. [15] or Astraldi et 
al. [1]). This current turns westward, passes the southern coast of France and parts 
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of it recirculate north of the Balearic islands, other parts pass the Balearic islands 
southward. 

The LIW enters the Western Mediterranean through the Strait of Sicily below the 
eastward flow of the MAW. It is present throughout the whole basin as an interme- 
diate temperature and salinity maximum. The flow of the LIW is generally cyclonic. 
Following approximately the 300 m depth contour it forms an intermediate boundary 
current around the eastern and northern coastlines. The central basin is entered via 
two passages: the Strait of Corsica and the Strait of Sardinia. Along the west coast of 
Sardinia and Corsica a current of LIW flows northward and merges at the northern tip 
of Corsica with the flow through the Strait of Corsica and feeds the Northern Current 
(Astraldi and Gasparini [1]) at the southern coast of France. Because of mixing with 
the surrounding water masses the temperature and salinity maxima become less pro- 
nounced during the spreading of the LIW so that the vertical gradients between the 
LIW and the homogeneous Western Mediterranean Deep Water (WMDW) become 
smaller. 

The WMDW is formed by deep convection in the Gulf of Lions south of France 
(e.g. MEDOC Group [11] or Leaman and Schott [7]). Because of its high density 
and the blocked passage at Gibraltar (sill depth 300 m) it fills the deep parts of the 
Western Mediterranean. The WMDW has a very uniform potential temperature and 
salinity (e.g. Lacombe et al. [6]). Parts of it participate in the outflow at Gibraltar 
together with the LIW. 

2    Measurements 

During the ocean acoustic tomography experiment THETIS-2 [18] two hydrographic 
surveys were carried out in the central basin of the Western Mediterranean (see fig. 3 
for station maps). The first of which on R/V Poseidon (cruise 201, leg 1) lasted from 
9th of January 1994 to 4th of February 1994. The second was on board the french 
R/V Suroit from 11th of October 1994 to 3rd November 1994. A total of 84 CTD 
station were occupied during the two cruises. The CTD measurements were obtained 
with a Neil Brown Mark III sonde. Bottle samples were taken together with the CTD 
to calibrate the conductivity sensor. The accuracy reached ±0.003 for salinity and 
±0.003°C for temperature. The location of the profiles was chosen to sample the con- 
nections between a large-scale mooring network within single cruises (THETIS-2 final 
report [18]). Thus the spacing between the stations is not optimal for the examination 
of thermohaline staircases. The profiles used in the analysis were averaged onto 1 dbar 
steps, so that single salt-finger interfaces, which have vertical extensions of only 20 to 
30 cm, are not resolved. Nevertheless this resolution seems to be sufficient since no 
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Figure 2: Names of Straits and Basins of the Western Mediterranean Sea. 

observed thermohaline high-gradient interface showed thicknesses of less than 5 m. 

3    The vertical step structure 

The thermohaline step structures in the CTD profiles in the Algero-Provencal-Basin 
are highly variable in difference to those found in the Tyrrhenian Sea by Molcard 
and Tait [14] and Johannessen and Lee [5] (see fig. 8). The temperatures, salinities 
and depths of steps and layers differ between the profiles. However a look into the 
OS diagram shows that well-mixed layers in different profiles must have a strong 
connection with each other (see fig. 4) since the 6S values of the layers are located 
in seperate bands in the diagram. 

Such a pattern with bands of values has also been found in the C-SALT area by 
Fleury and Lueck [4] and Schmitt et al. [16]. The band-like distribution of the OS 
values allows identification of the layers, which is impossible from a simple overlaying 
of the profiles. Moreover most of the step structures are very similar even though the 
first look does not show that (see fig. 5). After application of similarity transformations 
(linear transformations of the form 9' = cx0 + c2 and z' = c3z + c4) both to the 
potential temperature and the depth of the profile the similarity is much more obvious 
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Stations Poseidon 201 Jan 1994 Stations Suroit Oct1994 

Figure 3: CTD-station maps of the two hydrographic surveys in central Western 
Mediterranean. The upper was made on R/V Poseidon in January 1994, the lower on 
R/V Le Suroit in October 1994. 

(see fig. 5). The transformation preserves the ratios between temperature and depth 
gradients. Thus the typical pattern of each profile with a series of varying thick or thin 
layers and large or small steps is unchanged by the transformation. For the calculation 
of the transformation coefficients the profile 50 of the Suroit cruise has been taken 
as a reference because of its most regular pattern. The coefficients ci, c^, c3, c4 have 
been determined by a non-linear fitting routine in the way that the transformed profile 
matched best with the reference profile. The result of the transformation can be seen 
in figure 6, where a waterfall plot of all step containing 0-profiles is plotted with 
and without transformation. Here it can be seen that the pattern of the thermohaline 
staircase is similar for all profiles. After applying the transformation the identification 
of the well-mixed layers is much easier. 

For those profiles which have the most regular step structures (Suroit profiles 13, 
20, 44, 50) we find thicknesses of the layers from 25 to 85 m and of the interfaces of 
10 to 20 m. The temperature and salinity changes across the interfaces range from 
0.02 to 0.06°C and from 0.004 to 0.013 psu, respectively. The properties of the seven 
layers which we analysed are summarized in table 1. 
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January 1994 R/V Poseidon October 1994 N/O Le Suroit 
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Figure 4: 0-S diagrams for the two cruises containing the potential temperature- 
salinity characteristics of the well mixed layers of the thermohaline staircases. 

layer <e> <S> < o > < AZ> < A0> < A5> < Ao- > < Rp > 
no. [°C] [psu] [kg/m3] H [°C] [psu] [kg/m3] 

1 13.046 38.490 29.091 48 
2 12.987 38.478 29.094 61 

0.059 0.013 0.0024 1.26 

3 12.937 38.466 29.095 65 
0.050 0.012 0.0018 1.20 

4 12.908 38.459 29.095 43 
0.029 0.007 0.0008 1.11 

5 12.871 38.450 29.096 67 
0.037 0.009 0.0010 1.17 

6 12.851 38.446 29.097 28 
0.021 0.005 0.0003 1.12 

7 12.833 38.440 29.097 36 
0.018 0.005 0.0002 1.07 

Table 1: Average properties of the layer and step parameters. 
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Figure 5: Two potential temperature profiles from the R/V Le Suroit cruise in October 
1994. The left plot shows the profiles 50 (solid) and 33 (dashed). In the right plot 
profile 33 is transformed with a similarity transformation to match profile 50. After 
application of the transformation the similarity of the thermohaline staircase pattern 
is obvious. 
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Figure 6: Waterfall plot of all profiles containing thermohaline staircases. The left 
plot shows the profiles without transformation, while the right shows the transformed 
profiles. The transformed profiles show the high similarity of the typical pattern of 
all profiles. 

-600 

-700 

-800 

-900 

-1000 

-1100- 

-1200 

-1300 
0.95 

Figure 7: Average vertical density ratios and depths for the 6 examined thermohaline 
steps. Bars denote the standard deviation of the respective density ratios and depths. 
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4    Variability of the step structure 

The potential temperature and salinity profiles show some different characteristics, 
which can be used to classify them in order to distinguish between certain regimes : 

• The sharpness of the step structures becomes stronger from the west to the east. 

• The temperature/salinity amplitude of the steps follows the amplitude of the 
LIW temperature/salinity maximum. 

• The easternmost profiles show layers with inverted vertical temperature and 
salinity gradients. 

The sharpness of the steps 

The step structures of profiles in the eastern part of the experiment area are sharper 
than of those in the central part of the Algero-Provencal-Basin while the profiles near 
the Balearic islands do not show any steps. Profiles in the center of the area suggest 
that diffusion slowly removes the step structure when the step generating process is not 
any longer active. The diffusion leads to profiles which have reduced well-mixed layers 
and larger interfaces with nearly constant 6- and S-gradients (see figure 8). In these 
cases the thickness of the interfaces reached up to 50 m. Interestingly one-dimensional 
diffusion is not able to generate similar profiles. A simple one-dimensional model with 
diffusion with a constant diffusion coefficient changes the shape of our most regular 
profile (profile 50 of the October cruise, figure 12) much more to rounded edges, 
whereas the measured profiles have a linear interfacial part with sharp edges between 
interface and well-mixed part (see figure 8). 

Amplitudes of steps 

The temperature and salinity jump of the interfaces between the layers varies with 
the location of the profile. The closer the profile is located to the source of the LIW 
(southern tip of Sardinia) the larger the steps are. Coincident with the decrease of the 
amplitude of the steps we find an increase of the size of the well-mixed layers. This 
can be seen best in figure 10, where the first order transformation coefficients of the 
depth and temperature similarity transformations are plotted against each other. A 
strong relation (correlation coefficient 0.91) exists between the thermohaline step size 
and the thickness of the well-mixed layers. The larger the steps are (integrated over 
whole profiles), the thinner the well-mixed layers will be. The regression coefficient 
between the two first order transformation coefficients is 0.96 ± 0.17. This relation 
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Figure 9: Map of the classification of the observed thermohaline staircases. The num- 
bering of the regions corresponds to the sequence of the four profiles in figure 8. 
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Figure 10: Scatterplot of the first order transformation coefficients of the similarity 
transformation (ci, C3). The obvious linear relation between the coefficient connects 
decreasing thermohaline step sizes with increasing mixed layer sizes. 

close to one suggests a one-dimensional diffusive downward transport of heat and salt 
under conservation of the heat and salt content. 

Inversions in the step structures 

Profiles close to the straits of Sardinia and Bonifacio show an interesting character- 
istic which may be related to the forming and maintainance of the thermohaline steps 
in the Algero-Provencal-Basin. The usual gradient of temperature and salinity with 
higher above lower values is inverted in certain otherwise well-mixed layers. McDou- 
gall [10] predicted such patterns for salt-fingering conditions in frontal regions. The 
region where we found inversions is close to the entering area of the LIW into the 
Algero-Provencal-basin. Calculations of the absolute value of the horizontal gradients 
from climatological temperature and salinity data show that the regions with inverted 
layers coincide with regions with highest horizontal gradients. A map of the average 
temperatures in 700 m depth is plotted in figure 11. 

For the inverted layers in the experiment area we find diffusive density ratios of 
Rj = 1.5 ± 0.3 {l/Rd

p = RP)- This is close to the results of Marmarino [8] in the C- 
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Figure 11: Contour plot of the potential temperatures in 700 m depth from the 
THETIS-2 climatology. 

SALT area. He found diffusive density ratios of 1.2-2.6. Diffusive density ratios close 
to 1 are a sign for double diffusive unstable conditions in which temperature is layered 
unstable (higher temperatures below lower) and the stable layered salinity (higher 
salinity below lower) counteracts the temperature effect on density. The measurements 
of Marmarino [8] showed that inversions in well-mixed layers may be the vertical 
signature of horizontal intrusions into the layered system which are be driven by 
horizontal 0-S gradients (Turner [19], McDougall [10]). 

Temporal variability of the step structures 

The temporal variability in the experiment area may be examined by comparing 
the step structures of the two cruises in January 1994 and in October 1994. The 
comparison shows that the structures during both cruises are strikingly similar (see 
figure 12). Moreover not only single profiles at certain locations remain the same, 
but also the banded structure in the 0-S diagram is the same within the accuracy 
of our measurements (see figure 4). This means that the step-layer pattern and the 
horizontal variability of the thermohaline steps have not changed between January 
and October. This is a parallel to the the results of Molcard and Tait [14] who found 
that the structures in the neighbouring Tyrrhenian basin remained constant for at 
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Figure 12: Profiles 25 of the January cruise (dashed) and 50 of the October cruise 
(solid) show the temporal constancy of the thermohaline staircase pattern. Profile 50 
of the October cruise has been used as reference for the similarity transformation. 
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least 3 years and with Schmitt et al. [16] who found a system of layers in the C-SALT 
area being the same for at least 8 month. 

5 Four different regimes 

In figure 8 we have plotted four different types of profiles which we found in the 
Algero-Provencal-Basin. These profiles can be used to divide the measurement area 
into four regions in which the different types of profiles are preferably found. Figure 9 
shows the resulting regions for the two cruises. The regions deduced of the two cruises 
coincide within the achievable accuracy. The region of inverted layers is located close 
to the Strait of Sardinia, where the LIW enters the Algero-Provengal-Basin, it follows 
the further path of the LIW as a boundary current along the western coast of Sardinia. 
The second region with well developed step structures and no inverted layers is found 
as a band around the first. The diffusively reduced layers of the third region are 
located further to the north and to the west next to the second region. 

The different regimes are colocated with the amplitude of the horizontal gradient of 
temperature or salinity. Climatological values (THETIS-group [18]) have been used 
to calculate horizontal gradients of temperature and salinity in the depth layers in 
which steps have been found. The region with highest gradients falls together with 
the first region, where inverted layers have been found. The areas with diffused step 
structures or no steps at all fall together with regions of weak horizontal gradients. 
This supports the idea that horizontal gradients are an ingredient for developing step 
structures. This has also been found by Washburn and Käse [20] in the Mediterranean 
outflow region in the North Atlantic and supports the calculations of McDougall [10]. 
In the outflow region step structures were preferably found around meddies but not 
directly below them, where vertical but not horizontal gradients were present. 

6 The lateral density ratio 

In section 3 we argued that there must be a connection between related layers of 
different profiles even though they do not have uniform 9-S characteristics because of 
6-S values of each layer forming characteristic bands in the 0-S diagram in figure 4. 
The local inclination of these lines relative to the isopycnals gives the density ratio 
between water masses lying on the lines. Since the different points in the diagram 
represent different profiles at different locations, these density ratios are given by 
the mainly horizontal (lateral) along-layer temperature and salinity variations. The 
lateral density ratios which we find in our measurements are summarized in table 
2. The average lateral density ratio is Rh

p = 0.92 ± 0.06 {Rh
p = a6h/ßSh: where 
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layer 
no. 

R$ Suroit 
order 1 

Suroit 
order 0 

Poseidon 
order 1 

Poseidon 
order 0 

1 0.94 ±0.04 3.17 ±0.22 -109.0 ±8.5 3.24 ±0.14 -111.8±5.3 

2 0.95 ±0.04 3.29 ±0.21 -113.5 ±8.0 3.21 ±0.16 -110.7±6.2 

3 0.93 ±0.05 3.26 ±0.28 -112.3 ±10.6 3.17 ±0.21 -109.2 ±7.9 

4 0.92 ±0.06 3.21 ±0.32 -110.5 ±12.4 3.10 ±0.26 -106.4 ±9.9 

5 0.87 ±0.09 3.08 ±0.50 -105.7±19.3 2.92 ± 0.42 -99.5 ±16.1 

6 0.92 ±0.17 3.72 ±0.91 -130.0 ±35.2 2.64 ±0.87 -88.6 ±33.5 

7 1.15 ±0.24 4.77 ±1.28 -170.5 ±49.4 2.70 ±1.35 -91.0 ±52.0 

Table 2: Results of the linear regressions applied to the mixed-layer characteristics 
in figure 4. Rh is the along layer (lateral) density ratio calculated from the linear 
regression of both cruises. The other values give the regression coefficients of the two 
cruises. 

h denotes the along layer direction). The values for the two deepest layers, which 
have large uncertainties due to the very low horizontal gradients in these depths, 
are neglected. This value is in good agreement with the value of 0.93 expected by 
McDougall [10] for the case of a steady state interleaving process with a high turbulent 
Prandtl number. The regression coefficients in table 2 of both cruises agree within 
the given uncertainties (with a 95% confidence). The lateral density ratio can be 
obtained from the regression coefficients by multiplying the first order coeffcient with 
the appropriate a/ß. The work of McDougall [10] based on a steady state interleaving 
process. With our measurements we can not decide wether a steady state (of the small 
scale intrusions) was reached or not. We can only say that the overall system of steps 
and layers is in a steady state. 
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The statistical stability of convection dynamos 
Willem V. R. Malkus 
Dept. of Mathematics, Mass. Inst. of Technology, Cambridge, MA 02139. 

In a reversal of the usual kinematic dynamo approach, here the velocity field is deduced, a 
posteriori, from the results for an optimum magnetic field. In a forthcoming paper (Malkus, 
1996), and in this lecture, a form of the magnetohydrodynamic equations is derived which 
reduces to Navier-Stokes-like equations for a single vector field, for that limit in which the 
magnetic energy density is arbitrarily larger than the kinetic energy density. Also in that 
paper, relative stability arguments determine a parameter range in which that solution of 
maximum magnetic momentum transport will be statistically stable. 

Here, quantitative implications of those solutions are explored to establish the relation be- 
tween heat flux from the core and (the recently observed) differential rotation of inner and 
outer core. For this lecture, the formal discussion was simplified by using the geometry of a 
cylindrical annulus and choosing the ratio of the kinematic viscosity and magnetic diffusivity 
to be one. Hirsching and Busse (1994) chose the ratio to be four and Glatzmaier and Roberts 
(1995) chose the ratio to be five hundred in their numerical studies of dynamo processes. 
However, the estimate of this ratio in the Earth's core is one-millionth. Although it is yet 
to be established, dynamo dependence on this ratio appears small indeed. 

Soward's (1980) solutions for a (multi wave number) upper bound on magnetic transport 
may clarify the weak dependence on these dissipation coefficients. Although his study was 
in parallel plane geometry, with no large scale mean velocity, the reinterpretation here estab- 
lishes that exact magnetogeostrophic balance can be achieved in the body of the fluid with 
this solution translated to annulus geometry and with a derived weak mean toroidal flow. 
First estimates of this upper bound relation between heat flux and core rotation are indepen- 
dent of Rayleigh numbers and the Prandtl numbers, yet well within an order of magnitude 
of current measurements. 
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Anomalous effects of distant  boundaries on 
traveling-wave instabilities 

Michael Proctor 
University of Cambridge, U.K. 

Many immportant instabilities of pattern-forming type lead, in an infinite region, to growing 
waves that propagate in only one direction. In these circumstances, the onset of instability 
in a finite region, even one very long compared with the basic wavelength, takes place via a 
confined "wall mode" at a value of the instability parameter that is related to the absolute 
instability of the travelling wave modes. The non-linear solution takes the form of a near- 
uniform wave train in part of the domain, whose wavelength and frequency are controlled 
by the boundaries. Secondary instabilities can lead to curious solutions with two regions of 
different frequency and wave number, separated by a chaotic front. 
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What determines salt finger amplitude in un- 
bounded T-S gradient layers. 
Melvin E. Stern 
Dept. of Oceanography, Florida State Univ., Tallahassee, FL. 

The theoretical and experimental studies that have contributed to our understanding of salt 
finger convection in the ocean have mostly dealt with a fully developed (asymptotic) regime 
consisting of two deep, well-mixed reservoirs with specified temperatures and salinities (or 
solute concentrations in the sugar-salt case), between which, a well-defined gradient (equilib- 
rium) layer containing vertically coherent fingers forms; their amplitude and flux are deter- 
mined by the vertical salinity difference, the density ratio, the viscosity v, and the thermal 
diffusivity, KT] especially when the salt diffusivity, «s, or r, = KS/KT, is small. Although 
such thin finger layers are sometimes observed in ocean microstructure measurements, more 
often [in the C-SALT measurements1] the vertical gradient region between mixed layers is 
much too thick for the asymptotic regime, and any fingers therein could only be vertically 
coherent over a relatively small fraction of the layer. We will determine the amplitude of 
the weak fingers in this regime, a question which is of theoretical interest because there is a 
well-known exact nonlinear solution for a vertically unbounded gradient region in which the 
depth independent vertical velocity continues to increase exponentially with time. Neverthe- 
less, this model has been extensively used, along with various suggestions for other effects 
which limit the growth, such as the ambient shear in the ocean2. There are, however, labo- 
ratory experiments3'4 with a thick gradient region and no externally applied shear in which 
thin wiggly fingers with quite small amplitude are realized, and which are vertically coherent 
over only a fraction of the depth. A secondary (Floquet) instability5 has been proposed to 
limit the growth of long fingers in this case, but this theory still furnishes no quantitative 
measure of a statistically steady amplitude. To obtain a start on the problem, a very weak, 
nonlinear theory has been sought6, similar to the one developed by Malkus and Veronis7 for 
pure thermal convection at slightly supercritical Rayleigh number. In order to obtain thin 
salt fingers, Proctor and Holyer6 expanded in inverse powers of a very large but finite depth 
(i.e. thermohaline Rayleigh numbers). They were, however, unable to focus on the most 
unstable wavelength of interest, and were unable to obtain definitive amplitude information. 
We will be able to obtain this by considering a somewhat different parameter regime. 

Let Tz, Sz be the uniform vertical gradients in a completely unbounded spatial region, where 
the expansion and contraction coefficients are absorbed in all the following T—S quantities so 
that these have densimetric units. Analytical tractability will be achieved for a large Prandtl 
number (V/KT) fluid with 

e = T-'R-
1
 - 1 -+ 0+,        T = KS/KT = 0(1),        R = TZ/SZ = 0(1). (1) 
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Although this restricts the quantitative result to the sugar-salt experiment, we expect qualita- 
tive relevance for heat-salt (r < 1). This has proven to be true for the thin finger experiments 
in both cases where the "4/3" flux law holds; and the lateral intrusions observed in sugar-salt 
experiments have also proven to be relevant to oceanic observations of heat-salt intrusions. 
We shall obtain a prediction of the amplitude of the horizontal T-variation in (1), and a qual- 
itative explanation of the way equilibration occurs; in addition, we suggest the feasibilty of 
extending the calculation numerically to larger e (small r or R), where breakdown of fingers 

to convective layers is expected. 

The equations of motion are first non-dimensionalised using d = (ACT^/^T*)
1
/

4
 as the length 

sca;e, Tzd as the scale for the total temperaturedeviation (T"(x, y, z, t) + 9(z, <)) and salinity 
deviation (S' + <r(z,t)) from the undisturbed (TZ,SZ), KT/d as the velocity scale, d2 / nT as 
the time scale, and VKT/CP as the pressure scale. When U/KT -> oo, with (1), the asymptotic 

Boussinesq equations become 

0 = -Vp + V2v + (T' - S')k,        V.r = 0 , (2) 

jt[T'(x,y,z,t)+e(z,t)]+w = V2(T' + 9), (3a) 

~[S'{x,y,z,t) +*{z,t)] + ^ = V2(S" + <r) , (36) 

Let us look for solutions which are spatially periodic in the sense 

T' = 0 = S' = w,        <w>=0=<6 >=< a > 

where (") denotes a horizontal average and < >, a vertical average. In these equations, the 
undisturbed temperature gradient is unity, and the undisturbed salinity gradient is R_1 < 1. 

The horizontal averages of (3a,b) are the mean field equations 

de      d--     d2e _! (da      d —.A      d2a 

and when these are subtracted from (3a,b), the result is 

DT' + w = -w^- - h.{vT') - 4-üT7) 
Oz       \ dz        J 

(5) 

DTS' + R-'r-'w = -r-'w^ - r-1 (v.(vS') - -^wS'^j (6) 

^^-V'   D'S7I*-V''   V^V     dz2 
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By eliminating the horizontal velocity components (u, v) from (2), we obtain the linear equa- 
tion 

V4u; = V2(S' - T') (7) 

and when (S' — T") is eliminated using (5) and (6), we get 

r,d   d    d    ds 1 _„o   da     n    9   80 

r,d    d    d    d .      ^ „   , 

where the linear operator is 

rV-'-l^ + r-^l-r1!)   V2. (9a) 

Since the last terms in (5) and (6) are independent of (x,y), the value of N is 

N = -T-
1
DV\V.{VS') + DTV

2V.(vT) (95) 

The solution of the linear problem, L(w) = 0 for w, T', S' gives the eigenfunctions in the 
form exp(Am£) multiplied by 

(Wm,Tm,Sm) oc sinfcx cosly cosmz (10) 

and for subsequent rescaling of the wavenumbers, we need 

(k,l,m) = e1^(kj,m),     k2 = k2 + l2,     k2 = k2 + P . (10a) 

The eigenvalue equation L(w) = 0 for the growth rate Am is 

(Am + k2 + m2) [\m + r(k2 + m2)] (A;2 + m2)2 + Xmk2(l - R-1) - k2{k2 + m2)re = 0 , 

and in the e -> 0 limit, the simplified Am —> 0 solution is 

A erk2(k2 + m2)-r(k2 + m2y 
m      (k2 + m2)3(l + T) + kl{l - Ä-i) + 

= re
3/2(£2 + m2) 

fc2 - (k2 + m2) 2\3 

(1 - T)k2 2 

(11) 

+ .--   , 

where (10a) has been used to rescale the wavenumbers. In this e -> 0 limit (with R~1r~1 « 1), 
the Tm, Sm eigenfunctions obtained from the linearization of (5), (6) simplify to 

wm wT 
(12) 

For "thin" fingers with finite m2/k$ < 1, the maximum of (11) is 

max\m = y/—-L-e3/^k2 = — (13) 

The steady solutions of (4) for vertically periodic 0, a are 

80                da ,  ,        
— = wT'- < wT' >, —=T-

1
WS'-T-

1
<WS'>, (14) 

Oz 8z ' v    / 

and these will be substituted into (8) along with D = DT = V2, and also L = 1/(0, ■§£,■§-,■§;). 
For small e and A, the latter operator may be expanded as 
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L(0,...) = L(\m,...)- Am3L(0,.. .)/dXm + ..., where 

^'•••) = -(1 + r-^V6 - (r-1 - 1)V2 , (15) 

so that the expansion of (8) may be written as 

T(\ d      9      9\ 

Xm—(w) + r-2V\V2w \^S>- < ^S7 >] - V2
2V

2w fiT- < ~w~T >} + N + ... . 

(16) 
The small finite amplitude A in the leading term of 

w = Awm + 0(A2) (17) 

is now obtained from the solvability condition of the inhomogeneous differential equation 
(16). 

As in the classical Rayleigh convection problem7, it is convenient to first consider the I = 0 
(2D, "sheets") case because N vanishes identically [c.f. V\{wdT''/dz + udT'/dx) in (9b)]. 
We then multiply (16) by the eigenfunction wm of the L(Xm,...) operator and integrate over 
all (x,z), using (12) in (14) to get 

n      A.     /      &L(0,...) 
0 = AXm (w        v        ; 

dXm I 

A\T~
2
 - l)(fc2 + m2)"1 (wmV2V2wm&l- < < >)) (18a) 

= AXm ( wm-^—wm dXm 

- A\r~2 - l)k2(k2 + m2)"1 / [kiwi + (^j   ) (wl- < w*m » \ (186) 

The final step is to make use of the asymptotic wave number scaling [eqs (10a)-(ll)] in 
simplifying (15) to dL/dXm = (r-1 - l)k% + ..., so that the e -> 0 limit of (18b) is given by 

((*Ä+J^rT) (<- <*£>)) 
0 = A^r-1 - 1) - A2 AV  /  1- (19) 

(k2+m*)<w2
m> 

For I = 0, < < >= 1/4, < (^)2 >= (l/4)(3/8), < w*m{dwm/dx)* >= (l/4)(m2/8), and 

therefore (19) with (13) becomes 

0 = e3/2(k0)-
2(k2 + m2) [k2 - (k2 + m2)3] - (A2/8)(r"2 - l)(k2 - m2)(k2 + m2)"1   (20) 
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For long thin sheets with rh2 /k2, <C 1 with the fastest growing wavelength k2, = l/>/3, the 
squared amplitude 

A2 = 
16 

V3 

3/2 

/(' 
-2 

1) (21) 

is quite finite and quite different from the previously mentioned m = 0 (exponentially in- 
creasing) solution, and therefore the latter is a singular limit (of m). 

For rectangular planform (I ^ 0) solutions, the N term no longer vanishes, but it is easy to see 
that udT'/dx + vdT' fdy + wdT'/dz and N are directly proportional to m. Therefore N will 
have a negligible contribution to A for long thin fingers (m/ko <C 1), and the only modification 
necessary in our previous results is to introduce a factor cos2 ly — 1/2 in computing the 
averages in the numerator and denominator of (19). We conclude that for all long thin 
rectangular planform fingers, the squared amplitude is 

A2 = 
32 hH 

1 3/2 

/(r-2 1) (22) 

(m/ko < 1 kl = k2 + I2 = l/\/S). The corresponding T fluctuation (which might be 
measured in double-gradient sugar/salt experiments) has an amplitude Ae~1^2^3, or in di- 
mensional units 

^dim 

Tz [KTU/(9TZ)] 
1/4 

32 

v/3 

1/2 1 1/4 
j(r-2 - 1)V2 (23) 

The mechanism of amplitude equilibration is suggested by computing the modified mean 
density gradient dp/dz = da/dz — dB/dz from (14) and (12). The result is proportional 
to —A2 cos 2mz, i.e. dp/dz has a negative extremum (stabilizing stratification) where the 
finger velocities are extremal, and it has a positive extremum (destabilizing) where w = 0. 
It is expected that higher order (larger e) effects on the larger scale (half the vertical finger 
wavelength) of modified density field will have a major effect on large groups of fingers, 
possibly leading to convective layers where dp/dz is destabilizing. This effect seems accessible 
via numerical solutions of (2)-(3b), primarily because r = 0(1) implies a single dissipative 
scale. 
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As established by Thorpe et al. (1969), Hart (1971), Thangam et al. (1981), a 
stably stratified solution subjected to a horizontal temperature gradient is eventually 
characterized by the formation of convective layers, which has been attributed to 
the double-diffusive instability. Although the analysis in the works just mentioned 
has been performed for the steady instability in an infinite vertical slot, there are a 
number of reasons for one to believe that the corresponding finite steady formulation 
would be relevant to the various other laterally heated systems, possessing inherently 
nonsteady features. For example, the results of Huppert k Turner (1980) accentuate 
that the behavior of the layers is mainly determined by the horizontal temperature 
gradient and is independent of the ice-melting process at a vertical boundary: the 
layer height was found to be described by the Chen scale (Chen, Briggs & Wirtz 1971) 
irrespective of whether the lateral heating/cooling is due to the meting-ice surface or 
to the temperature difference between the vertical side walls of an enclosure. 

Another factor emphasizing relevance of the steady formulations is associated with 
the established validity of quasi static approximations. In particular, when assump- 
tions of such a type were made by Tanny k Tsinober (1988), for the interpretation of 
their experimental data, and by Kerr (1989), theoretically, the critical values of the 
Rayleigh numbers obtained in both these works showed reasonable agreement with 
the marginal stability curve computed for an infinite vertical slot by Hart (1971) and 
Thangam et al. (1980). Moreover, a weakly nonlinear analysis by Kerr (1990), where 
the quasi static assumption was also made, demonstrated that, like in the results ob- 
tained by Hart (1973) for the slot, it is the subcritical bifurcation that is responsible 
for the onset of the layers in the single-side-wall heating problem. 

Although the earlier studies have determined some general characteristics of the 
layer behavior (such as, for example, the Chen scale, "successive" and "simultaneous" 
modes of layer formation; see Chen et al. 1971), specific features of the behavior of 
the layers, namely as to under what circumstances they merge and what the thickness 
of the resulting layer is, turned out to be hardly susceptible of description in terms 
of any simple mechanism (such as the doubling of the layer height initially suggested 
by Wirtz & Reddy 1979, for example), but were found likely to be associated with 
some rather complex scenarios (Tanny k Tsinober 1988, Jeevaraj k Imberger 1991). 
Moreover, it was noted by Tanny k Tsinober (1988) that the layer height during the 
merging process can even be irreproducible despite practically identical conditions 
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maintained in the conducted experiments. Among some other issues, it also remained 
unclear whether the boundary between the "successive" and "simultaneous" modes of 
layer formation should be associated with the primary instability of the system or with 
a secondary bifurcation, or else, attributed to a phenomenon other than instability at 
all. 

The purpose of the study the results of which were discussed during the first 
part of the lecture (Tsitverblit k Kit 1993, Tsitverblit 1995, hereinafter, TK and 
T, respectively) was to examine the possibility that the diversity of the previously 
observed flow characteristics would virtually be associated with the variety of the 
properties of steady states in the appropriately formulated finite-enclosure heat-salt 
problems. 

The reflectional symmetry of the problem a priory implies that symmetry-breaking 
bifurcations, in addition to limit points, are also feasible in the system. Consequently, 
the attention was primarily concentrated on the higher-order mechanisms responsible 
for the formation of such singularities. In particular, the presented results exhibited 
the key role of two basic types of the scenarios giving rise to the multiple steady solu- 
tions as the value of the salinity Rayleigh number is increased from that designating 
the commencement of the double-diffusive region (Hart 1971, Thangam et al. 1981). 
One of them is associated with the progressive bending of a solution branch and 
forming limit points on it. As for the large and small thermal Rayleigh numbers the 
solution is unique and symmetric, in application to the symmetric solutions the limit 
points form only in pairs, each of which constitutes an S'-like structure arising from a 
preceding non-degenerate hysteresis point. Although new asymmetric branches can 
arise also from single limit points, forming at the existing asymmetric branches as 
a result of the exchange of the criticality of a symmetry-breaking bifurcation point 
already present, it is the second mechanism, consisting of the emergence of an isola of 
asymmetric solutions and its subsequent splitting into the pair of symmetry-breaking 
bifurcations on a symmetric branch, that is basically responsible for the existence of 
the asymmetric solutions. 

It was demonstrated that, owing to the above mechanisms, the structure of steady 
flows in a vertical rectangular enclosure of the aspect ratio 7 = 3 becomes extremely 
complex even when the salinity Rayleigh number is still relatively small. The growing 
complexity of the bifurcation diagram is associated with expansion of the region of 
solution multiplicity, increase of the number of the multiple solutions present over 
certain intervals of the bifurcation parameter (RaT), and enrichment of the variety of 
the types of the steady flows. The latter trend has in particular been represented by 
the maximal number of cells, present in the set of the steady solutions characterizing 
a value of the salinity Rayleigh number, being incremented when Ras exceeds certain 
critical values. 

In spite of the appreciably different range of the salinity Rayleigh numbers, the 
characteristics of the obtained steady solutions have been found to qualitatively reflect 
the whole diversity of the flow patterns observed in the previous studies both through- 
out the transitional processes and at the steady, or quasi steady, stages. Among the 
computed steady solutions, in particular, there were found symmetric and asymmet- 
ric flows characterized by one, two, three, four, and five cells. Like in the steady 
(quasi steady) and transient flows observed in the previous studies, the presence of 
a stagnant flow region in the steady solutions was found to depend on whether their 
buoyancy ratio is above or below certain critical interval of its values in the vicinity 
of one of the computed limit points, which may suggest that this singularity plays the 
role of the boundary between the "successive" and "simultaneous" regimes of layer 
formation (Chen et al. 1971). 

Within the considered range of parameters, most of the relevant flow patterns, 
the multicell flows, have been found linearly unstable. Instability of the steady solu- 
tions was found susceptible of consistent interpretation as being associated with the 
mechanisms responsible for the promotion of the solution multiplicity.  The results 
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presented, however, are indicative of the growth rates of the instabilities being so 
small that the corresponding steady flows could long be observed in the experiment 
and perhaps affect essentially the characteristics of such systems. In particular, it is 
the cell height of unstable multicell flows that turned out to be in good agreement 
with the physically meaningful length scales of the layers (they were found to be close 
to the Chen scale) observed in the previous studies. It was also emphasized that the 

critical values of the parameter Q =    ^*r   *^      , whose construction could also be 

justified by meaningful physical arguments (Kerr 1989), fell well inside the region of 
the flow multiplicity. These results give evidence of the important role played by the 
multiplicity of not only the stable but also the unstable steady flows in the physical 
mechanisms responsible for the diversity of the earlier documented flow features. 

The instabilities found by Thorpe et al. (1969), Hart (1971), Thangam et al. (1981), 
Kerr (1989), TK and T, as well as the related diversity in the layer characteristics 
observed in other studies, have been commonly associated with the utterly different 
molecular diffusivities of heat and salt. Multiplicity of the equilibrium states, however, 
proved feasible in heat-salt systems described also in terms of the equal diffusivity 
coefficients, in particular, where the two components are distinguished in terms of the 
"mixed" boundary conditions (see, among many others, Cessi k Young 1992, Quon k 
Ghil 1992,1995, where highly simplified ocean thermohaline circulation models were 
addressed). It is important to emphasize that the mechanism bringing about the 
instabilities in these works is not double-diffusive (this mechanism is discussed, in 
particular, by Walin 1985, whereas the principal idea behind it dates back to the 
seminal work by Stommel 1961). As emphasized by Welander (1989), however, the 
"mixed" boundary conditions can eventually also lead to manifestation of the double- 
diffusive effects, by virtue of the nonequal gradients of the components, even when 
the diffusivity coefficients of both density-effecting properties are equal. 

In view of the "mixed" boundary conditions at the vertical side walls in all the 
earlier studies addressing the laterally heated systems (no salt flux is imposed at 
these boundaries together with the temperature difference), the purpose of the work 
addressed in the second part of the lecture (Tsitverblit 1996) has been to inquire 
about the physical nature of the bifurcation phenomena uncovered in TK and T (and 
believed to be responsible for diversity of the previously observed phenomena) with 
particular emphasis on the role played by the different diffusivity coefficients versus 
that of the "mixed" side-wall boundary conditions. This objective was fulfilled by 
examining the steady solution structure in such systems with the diffusivity of the 
solute, &s, being equal to that of the temperature, kj, and comparing the results with 
those in T. 

Without dwelling on a number of other interesting observations arising from this 
study, the attention during the lecture was concentrated on aspects of the fact that, 
despite some simplification in the solution structure and quantitative differences in the 
critical thermal Rayleigh numbers, most of the main qualitative features of the bifur- 
cation phenomena and multiple steady flows in such systems with the equal diffusivity 
coefficients were found to be basically the same as for the heat-salt diffusivity ratio. 
In particular, the Rar characterizing the bifurcations obtained exhibit an apprecia- 
ble drop as the vertical solute stratification exceeds a certain critical value, close to 
that associated in the previous works with the commencement of the double-diffusive 
region, and grow with the further increase of this parameter, like in the results of 
Hart (1971), Thangam et al. (1981), and T, where Lew = f£ = 101. As Ras in- 
creases, the multiple steady flows form by the same scenarios as distinguished in T 
for ^ = 101 and only within a region of some intermediate values of the buoyancy 
ratio, with the unique solutions at the very large and very small values of this pa- 
rameter. Similarly to the results in T, the region of multiple steady states was found 
to expand with the solute Rayleigh number growing.   In addition, the sequence of 
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the exchanges between the different flow patterns proved to be essentially the same 
as at Lew = 101 (i.e., like in T, two-, four-, five-, three-, and one-cell patterns were 
successively observed along the symmetric branches at the highest Ras considered), 
and the variety of the types of the multiple steady flows was found to enhance with 
Ras crossing some its critical values, which was also the case in T. 

The qualitative persistence of the bifurcation phenomena even for the equal diffu- 
sivity coefficients was interpreted as being due to the mixed boundary conditions for 
the temperature and the solute imposed at the vertical side walls of the enclosures in 
many previous studies. It was suggested, in particular, that by virtue of the differ- 
ent ways of specification of the boundary conditions, a perturbation would inevitably 
cause the higher increase of the horizontal gradient for the temperature than for the 
solute and, thereby, the different rates of the lateral diffusion of these components 
even when their diffusivity coefficients are the same. This mechanism was found to 
be essentially identical to the one the principal possibility of which was suggested by 
Welander (1989) in application to the oscillatory instability in a configuration with 
vertical gradients of two components. 

Apart from the consistency with the results for the boundary conditions of the 
mixed type, the suggested interpretation was also found to be more directly supported 
by the data obtained with the Dirichlet side-wall boundary conditions for the solute. 
The latter are characterized by the absence of all the instabilities in the problem with 
the equal diffusivities and by a number of the bifurcations at Lew = |^ = 101 being 
much smaller than in T. Based on these additional observations, it was concluded 
that the instabilities observed for Lew = 1 are indeed associated with the differ- 
ent diffusion gradients of the temperature and the solute that are generated by the 
perturbation in their respective isolines by virtue of the mixed side-wall boundary 
conditions, rather than simply with the unequal gradients of these components char- 
acterizing the background motion itself. This conclusion accentuates that the nature 
of the bifurcation phenomena and the related diversity of the flow features observed 
in laterally heated thermohaline systems should be attributed to the double-diffusive 
effects that are due not only to the different diffusivity coefficients of heat and salt, 
but also to the different types of the side-wall boundary conditions often maintained 
for the involved components. 
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A Laboratory Study of the Effect of Bottom Topography on Ocean 
Circulation 

by George Veronis 

During spring, 1996, Ross Griffiths of Australian National University and 
I carried out a series of experiments to study the effects of a sloping side 
boundary on the circulation of a homogeneous fluid in a rotating sliced cylin- 
der. Pedlosky and Greenspan (1967) and Beardsley (1969) studied the same 
problem when the side wall is vertical. In the present experiments the con- 
tainer was made by cutting a circular cone (90 degree apex angle) with a 
plane that has a slope of 0.1 with respect to the horizontal (see figure 1). 

As in the earlier experiments the slope of the inclined plane is meant to 
simulate the beta-effect on the beta-plane (i.e., the linear variation of the 
Coriolis parameter, /, with latitude). The analogy with ocean circulation 
enters through the potential vorticity, (( + f)/H, the variation of which 
determines the large scale circulation. Here, £(= dv/dx — du/dy) is the 
vertical component of relative vorticity and H is the depth of the fluid. It 
is evident that an increase (decrease) in / can be simulated by a decrease 
(increase) in H. Although the sloping bottom and the sloping sides both 
involve depth variation, the effect of the sloping bottom is interpreted as a 
beta-effect while the effect of the 1:1 sloping side is interpreted directly as a 
depth variation. Thus, minimum depth above the sloping bottom indicates 
"north" and maximum depth indicates "south". 

The tank diameter was 97.3 cm and the minimum depth of the interior 
was 8.48 cm; the maximum depth was 15.79 cm. The flow was driven by the 
top lid which rotated with the angular velocity, £2 + Afi.The range of the 
Rossby number, Ro = Afi/fi, was 0.0021 < Ro < 0.175 The range of the 
Ekman number, E = v/(h2Ü), was 2.110"5 < E < 1.2610"4. 

For the linear problem potential vorticity reduces to f/H. Hence curves 
of constant potential vorticity , called geostrophic contours, are circles near 
the rim and D-shaped curves elsewhere, as seen in figure 2. The curve of 
intersection of bottom slope and side slope is an ellipse. The innermost 
circular geostrophic contour (shown by the dashed circle in figure 2) is tangent 
to the northernmost point on the ellipse. In contrast to the vertical wall 
case, where all geostrophic contours intersect the rim at east and west, all 
geostrophic contours in our set-up close upon themselves. 

The main results obtained with the sloping boundary are the following: 
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1) For weak driving (nearly linear flow) fluid between the rim and the 
dashed circle travels along a circle with an azimuthal velocity independent of 
azimuthal angle. The flow inside the dashed circle but still on the slope also 
is largely azimuthal along a portion of the circles of the D-shaped curves. 

2) Fluid in the "interior" ( over the gently sloping bottom) travels from 
or to points on the northwestern quadrant to or from points on the eastern 
side of the ellipse. Each of these trajectories is nearly independent of position 
when the forcing is weak. This interior flow has an eastward component for 
Aft < 0 and a westward component for Aft > 0. 

3) In all cases (weak or strong forcing) azimuthal flow on the D-shaped 
curves cuts sharply across the circular parts of contours closer to the center 
and joins the interior flow. This cross-contour flow occurs on the eastern half 
of the ellipse. The flow is from the slope region to the interior for Aft < 0 
and vice versa for Aft > 0. This sharply cross-contour flow is associated with 
strong frictional dissipation. Thus, in strong contrast to the vertical wall case, 
and indeed to all of the intuition that we have developed since Stommel's 
(1948) westward intensification paper, in the present case the bulk of the 
dissipation takes place on the eastern side of the basin. This explicit result 
is not expected to carry over to ocean basins since they are not enclosed by 
closed geostrophic contours, but it does indicate that sloping boundaries can 
allow dissipation to take place at locations that are far from those that one 
would expect from the vertical wall case. 

4) Cyclonic forcing (Aft > 0) leads to a circulation inside of D-shaped 
curves consisting of a northwestward interior flow, a counterclockwise az- 
imuthal flow, and a short cross-contour traverse between the azimuthal flow 
and the northwestward interior flow. The only effect of strong driving is to 
make the interior flow more zonal. There are negligible kinks and no evidence 
of instabilities. The flow takes on the form of a Fofonoff gyre although the 
dynamical balance in the present situation is different from Fofonoff's. 

5) Strong anticyclonic forcing ( Aft < 0) generates strong anticyclonic and 
cyclonic loops where the azimuthal flow enters the interior in the northwest. 
These loops can pinch off and become eddies. Eddy activity is confined to 
the northwestern part of the interior except when Aft is very large when the 
eddies may extend even into the southeastern quadrant. Eddies are formed 
because the azimuthal flow overshoots the latitude to which it must return 
in order to connect up to the slow southeastward interior flow. In contrast, 
with cyclonic forcing, flow enters the interior from the south and east so the 
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fluid has the same direction as that required by the interior flow, hence there 
is no overshoot and no eddy activity. 

6) The stability of the system with anticyclonic forcing depends on the 
values of the Rossby and Ekman numbers (figure 3). The sloping wall causes 
the system to become unstable at values of Ro that are smaller than those 
for a vertical wall. 

7) In general, the sloping boundary serves as a conduit which can take 
fluid from a point where it enters from the interior and carry it without 
changing the value of potential vorticity to a distant point where it may 
enter the interior. It is this feature that should be applicable to ocean basins 
and that may give rise to features that are very different from those in the 
flat-bottomed case. 
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Figure 1.   (a) A perspective view of the sliced cylinder tank with sloping 
sidewalls. (b) The sliced cylinder with sloping walls viewed from the east. 

Figure 2. Contours of equal depth (looking down on the tank). The 
dashed circle is tangent to the northernmost point of the gently sloping bot- 
tom. For depths greater than 8.48 cm the contours are D-shaped curves. 

364 



B-plane with sloping wall 
Anticyclonic forcing 

Stability regimes 

0.1 - 

Ro 

0.01  - 

0.001 
10' 10" 

Figure 3. The stability diagram in the Ro vs E plane. Solid circles 
indicate stable flow, open circles indicate flow with eddies. The transition 
to instability occurs at lower values of Ro than it does for the case with a 
vertical wall. 
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Double Diffusive Effects in Magmas 
Andrew W Woods, School of Mathematics, 
University of Bristol, Bristol, England 

In this lecture we reviewed a number of processes concerning the dynamics of magma cham- 
bers, which contain molten rock and are located 5-10km below the earth's surface at active 
volcanoes. Much of the work in the lecture has been described in the papers by Nilson (1985), 
Chen and Turner (1980), McBirney (1985) and Huppert and Turner (1980). Magma cham- 
bers are cooled at their upper surface and side-walls from the surrounding cold crust and 
this leads to cooling and crystallisation of the melt. As the melt cools, any changes in the 
density of the melt depend on the degree of cooling and of changes in composition of the 
melt. The changes in composition result from crystallisation which occurs as the melt cools. 
The crystals may either remain attached to the boundary of the chamber or they may be sus- 
pended in the melt, in which case they also affect the density of the melt. A magma chamber 
thereby provides an environment in which there is diffusion of both heat and composition 
and therefore in which double diffusive effects may develop. 

The main focus of the lecture was on double-diffusive boundary currents which develop at the 
cooled side-wall of the chamber. The cooling of the melt may produce either a buoyant or a 
dense flow along the side-wall of the chamber; in some cases the thermal and compositional 
effects act in parallel and the flow may be described by similarity solutions, with an inner 
compositional layer, a central thermal layer and an outer viscous layer. In other cases, the 
thermal and compositional effects act in opposition. As a result of the different scales for 
thermal and compositional diffusion, this leads to counterflowing boundary layers. There 
are no simple similarity solutions to describe such flows, since the thermal layer advects 
information downwards (upwards) while the compositional layer advects information upwards 
(downwards). Instead, the motion may calculated numerically (Nilson et at, 1985). 

As the boundary layers advance along the boundary, they entrain adjacent fluid by viscous 
and thermal diffusion, inceasing the volume flux in the current. This boundary current 
drains back into the interior of the chamber, either at the top or base of the chamber and a 
net circulation is set up in the interior. The rate of descent of the first front associated with 
the interior filling box flow was described and the variation of density with position behind 
the front was also discussed following Worster and Leitch (1985). In this way, the interior 
fluid becomes stratified as a result of the boundary flow, even if it is initially homogeneous. 
As a result, double diffusive layering may then develop in the interior of the chamber: as 
the buoyant boundary layer rises through a stratified interior, lateral intrusions may develop 
from the boundary flow. This is because the density difference between the boundary flow 
and the interior progressively decreases until the boundary flow is no longer buoyant. The 
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boundary flow then intrudes into the interior fluid. For a stratification ff and a boundary 

current of buoyancy Ap, the vertical separation of these lateral intrusions scales as Ap/gf. 

The main part of the lecture concluded by noting that the process of layering formed by the 
boundary current in a magma chamber has some similarities with the layers which form as 
an iceberg melts in a stratified ocean (Huppert and Turner 1980). In that case, a current of 
fresh melt water runs up the side of the iceberg, and the outer part of this current intrudes 
into the interior as it mixes with the relatively saline deeper fluid and rises into the less saline 
environment. The presence of and the circulation set up by the layers tends to localise the 

melting on the iceface producing a rippled texture on the ice-face. 
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GFD PROGRAM 1996 

Monday, June 17th 
10:00 A Lawrence Peirson HI, Associate Dean, Woods Hole Oceanographic Institution 
Welcome and Introduction 

10:15 Barry Ruddick, Dalhousie University 
Double diffusion: An introduction. Pt. I 

Tuesday, June 18th 
10:00 Barry Ruddick, D.U. and George Veronis, Yale University 
Double diffusion: An introduction. Pt. II 

Wednesday, June 19th 
10:00 George Veronis, Yale University 
Double diffusion: An introduction. Pt. in 

19:00 Andy Woods, University of Bristol 
Double diffusion in geological systems 

Thursday, June 20th 
10:00 Ray Schmitt, W.H.O.I. 
Macro-scale signatures of double diffusion in the ocean 

14:00 Jack Whitehead, Woods Hole Oceanographic Institution 
Doubly-driven catastrophes in my lab. 

Friday, June 21th 
10:00 Barry Ruddick, Dalhousie University and/or George Veronis, Yale University 
A model for salt fingers 

Monday, June 24th 
10:00 Barry Ruddick, Dalhousie University 
Double diffusion: Laboratory experiments 

Tuesday, June 25th 
10:00 George Veronis, Yale University 
Thermohaline fronts 

13:00 Gerd Krahmann, University of Kiel 
Thermohaline steps in the Algero-Provencal-Basin (Western 
Mediterranean) - spatial and temporal variability 

Wednesday, June 26th 
10:00 Ray Schmitt, W.H.O.I. 
Micro-scale signatures of salt fingers in the ocean 

14:00 Eddy Carmack, IOS, British Columbia 
Double-Diffusive Intrusions in the Arctic Ocean: A Mechanism of 
Transition 

Thursday, June 27th 
10:00 Eric Kunze, University of Washington 
Limits on growing, finite-length fingers: A gradient Froude number 
constraint 
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14:00 Eddy Carmack IOS, British Columbia 
Three Vignettes: 1) Diffusive Instabilities driven by Geothermal 
Heating; 2) Light Quantum Principles in Oceanography; 3) the Thermal 
Curtain Hypothesis. 

17:00 Staff 
Discussion of possible projects. 

Friday, June 28th 
10:00 Eric Kunze, University of Washington 
Effects of vertical shear on salt fingers 

14:00 Eric Chassignet, U. Miami 
On the choices of eddy diffusivity in ocean general circulation 
models 

Monday, July 1st 
10:00 Oliver Kerr, City University, London 
Double-diffusive intrusions at boundaries 

Tuesday, July 2nd 
10:00 Keith Mien, University of Colorado 
Weakly nonlinear convection I: Rayleigh-Benard Convection 

17:00 The Fellows 
Project outlines 

Wednesday, July 3rd 
10:00 Keith Mien, University of Colorado 
Weakly nonlinear convection II: Strong spatial resonances in 
multi-layer convection 

14:00 Phil Morrison, University of Texas at Austin T.B.A. 

Thursday, July 4th 
10:00 G. Washington, University of Delaware 

Friday, July 5th 
No lectures 

Monday, July 8th 
10:00 Paul Kolodner and Hermann Riecke 
Binary fluid convection I 

Tuesday, July 9th 
10:00 Paul Kolodner and Hermann Riecke 
Binary fluid convection II 

13:00 Isom Herron, RPI 
The Two-Dimensional stability of flows with constant vorticity 

Wednesday, July 10th 
10:00 Paul Kolodner and Hermann Riecke 
Binary fluid convection III 

14:00 Charles Doering 
Convection, Stability and Turbulence 
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Thursday, July 11th 
10:00 Paul Kolodner and Hermann Riecke 
Binary fluid convection IV 

14:00 Paul Kolodner 
Viscoelastic Convection 

Friday, July 12th 
10:00 Edgar Knobloch, UC Berkeley 
Oscillatory convection in large aspect ratio containers 

14:00 Paul Dellar, University of Cambridge 
Ambipolar diffusion: astrophysical applications of porous media 

Monday, July 15th 
10:00 Edgar Knobloch, UC Berkeley 
Transition to chaos in standing and travelling wave convection 

Wednesday, July 17th 
14:00 Naftali Tsitverblit 
Multiplicity of the equilibrium states in laterally heated 
thermosolutal systems. 

Monday, July 22nd 
10:00 Willem Malkus, Massachusetts Institute of Technology 
The geodynamo — Analytic (and numerical) idealizations. 

Tuesday, July 23rd 
10:00 Mike Proctor, University of Cambridge 
Magnetoconvection: fundamentals 

Wednesday, July 24th 
10:00 Mike Proctor, University of Cambridge 
Magnetoconvection: simulations 

Thursday, July 25th 
10:00 Melvin Stern, Florida State University 
A prediction of finger fluxes in an unbounded T-S gradient region. 

14:00 Mike Proctor, University of Cambridge 
Anomalous effects of distant boundaries on the onset of 
travelling-wave instabilities 

Friday, July 26th 
NO LECTURES! 

Monday, July 29th 
NO LECTURES 

Tuesday, July 30th 
10:00 Stewart Turner, Australian National University 
Laboratory models of double-diffusive processes 

Wednesday, July 31st 
10:00 Stewart Turner, Australian National University 
Stratification and circulation produced by double-diffusive sources 
in closed regions 

Thursday, Aug 1st — Thursday, August 8th 
NO LECTURES 
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Friday, Aug 9th 
10:00 George Veronis, Yale University 
A laboratory study of topographic effects on ocean circulation 

Monday, Aug 12th — Friday, Aug 16th 
NO LECTURES 

Monday, Aug 19th 
10:00 
Fellow's Lecture I: Jon Wylie 
Surface wave propagation in granular media 

11:00 
Fellow's Lecture II: Naftali Tsitverblit 
The finger regime of double-diffusive convection with equal 
diffusion coefficients and mixed boundary conditions 

13:30 
Fellow's Lecture HI: Tuni Kundu 
Stability of volcanic magma 

Tuesday, Aug 20th 
10:00 
Fellow's Lecture IV: Suzanne Talon 
Semi-convection in stars 

11:00 
Fellow's Lecture V: Joseph Biello 
Double-diffusion in a thin slot 

14:00 
Fellow's Lecture VI: Sebastien Aumaitre 
Convection in the presence of radiative transfer 

Wednesday, Aug 21st 
10:00 
Fellow's Lecture VII: Francesco Paparella 
Single-mode convection with shear and salt 

11:00 
Fellow's Lecture VETI: Alex Casti 
Double-diffusion with a sharp density interface 

13:30 
Fellow's Lecture DC: Jean-Luc Thiffeault 
Long-wave instability in thermohaline-Marangoni convection 

14:30 
Fellow's Lecture X: Jim Stephens 
Stability analysis of a gravity current over topography 
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